
Quick Start

Visual Studio Template

An automated Visual Studio 2022 template for creating MelonLoader mods and

plugins is available.

It handles the creation of the required boilerplate (the MelonMod / MelonPlugin

class, MelonInfo , and MelonGame) as well as referencing the required

assemblies for mod development, mainly MelonLoader, Harmony, and for Il2Cpp,

proxy assemblies and the unhollower (Il2CppAssemblyUnhollower or

Il2CppInterop). It also handles variation between MelonLoader or Unity versions,

such as framework versions or override changes.

1. Download MelonLoader to your game and run it once before continuing.

2. Download the VSIX from the GitHub repo.

3. Close all instances of Visual Studio and run the VSIX installer (double-clicking it

should open it).

4. Open Visual Studio and create a new project.

5. Search for MelonLoader and click on either Mod or Plugin.

This tutorial assumes that you have a fair grasp of the C# programming

language and basic knowledge of Visual Studio and Unity Engine.

!

Quick Start https://melonwiki.xyz/#/modders/quickstart

1 of 14 27/09/2024, 20:57

https://melonwiki.xyz/#/modders/quickstart?id=quick-start
https://melonwiki.xyz/#/modders/quickstart?id=quick-start
https://melonwiki.xyz/#/modders/quickstart?id=quick-start
https://melonwiki.xyz/#/modders/quickstart?id=visual-studio-template
https://melonwiki.xyz/#/modders/quickstart?id=visual-studio-template
https://melonwiki.xyz/#/modders/quickstart?id=visual-studio-template
https://github.com/TrevTV/MelonLoader.VSWizard/releases
https://github.com/TrevTV/MelonLoader.VSWizard/releases

6. Enter the project info and press Create.

7. Select the EXE of the game you are modding and press Open.

8. Wait for the project creation and it should open a Visual Studio window with a

working project.

You may want to change the author in the MelonInfo attribute. It defaults to

your computer's username.

Basic mod setup

First, you will need to create a new project. Unity versions require different project

templates:

• Any Il2Cpp game:

◦ Template: Class Library

◦ Framework: .NET 6.0

• Mono game after or on Unity 2021.2 :

◦ Template: Class Library

◦ Framework: .NET Standard 2.1

• Mono game after or on Unity 2018.1 :

◦ Template: Class Library (.NET Framework)

◦ Framework: .NET Framework 4.7.2

• Mono game after or on Unity 2017.1 :

◦ Template: Class Library (.NET Framework)

◦ Framework: .NET Framework 3.5 or .NET Framework 4.7.2

(depending on the game)

• Any other version:

Quick Start https://melonwiki.xyz/#/modders/quickstart

2 of 14 27/09/2024, 20:57

https://melonwiki.xyz/#/modders/quickstart?id=basic-mod-setup
https://melonwiki.xyz/#/modders/quickstart?id=basic-mod-setup
https://melonwiki.xyz/#/modders/quickstart?id=basic-mod-setup

◦ Template: Class Library (.NET Framework)

◦ Framework: .NET Framework 3.5

Please note that Class Library and Class Library (.NET

Framework) are different templates.

Doing so will create a new empty cs file, called Class1 . This will be our mod

main class.

I'll rename it MyMod . You can change it to whatever you would like though.

You will now need to reference the main MelonLoader assembly. Right click the

Reference directory, Add a reference... , and click Browse .

Find to the folder of the game you installed MelonLoader on. The file you need to

reference from here is MelonLoader/MelonLoader.dll .

Any type of mod requires a MelonInfo assembly attribute for MelonLoader to

know what mod it's loading.

Additionally, a MelonGame assembly attribute is needed so MelonLoader knows

what games your mod supports.

To set one up, go to the Properties directory and add these 3 lines to

AssemblyInfo.cs or Program.cs :

Quick Start https://melonwiki.xyz/#/modders/quickstart

3 of 14 27/09/2024, 20:57

MelonInfo contains 4 required parameters and an optional one:

• MyMod : The main class of your mod. We will talk about it later

• My Mod Name : The name of your mod

• version : The version of the mod. It should respect the semver format

(example: 1.0.0)

• Author Name : The name of author of the mod

• Download Link : The link to download or find the mod [optional]

MelonGame contains 2 optional parameters:

• Game Developer : The developer of the game

• Game Name : The name of the game

Both parameters in MelonGame can be left empty to have MelonLoader not

check them.

Omitting the Game Name parameter makes the mod load on all games made by

the same developer, and omitting both parameters makes the mod load on all

games.

using MelonLoader;

using MyProject; // The namespace of your mod class

// ...

[assembly: MelonInfo(typeof(MyMod), "My Mod Name", "version", "Author Name"

[assembly: MelonGame("Game Developer", "Game Name")]

cs

Quick Start https://melonwiki.xyz/#/modders/quickstart

4 of 14 27/09/2024, 20:57

https://semver.org/
https://semver.org/

Often the name of the game and developer doesn't match the marketing. To

get guaranteed correct information find the app.info file in the <Game

Name>\<Game Name>_Data\ folder.

The MelonMod class

We are almost ready. Let's go back to our MyMod class and turn it into a Melon.

First, let's add using MelonLoader; and make our MyMod class inherit from

MelonMod .

At this point, your MyMod class should looks like this:

Your mod is now a valid Melon and can be loaded by MelonLoader.

In the following paragraphs, you will learn how to add some functionality to it.

using MelonLoader;

namespace MyProject

{

public class MyMod : MelonMod

{

}

}

cs

Quick Start https://melonwiki.xyz/#/modders/quickstart

5 of 14 27/09/2024, 20:57

https://melonwiki.xyz/#/modders/quickstart?id=the-melonmod-class
https://melonwiki.xyz/#/modders/quickstart?id=the-melonmod-class
https://melonwiki.xyz/#/modders/quickstart?id=the-melonmod-class

Melon Callbacks

MelonMod comes with a few virtual callbacks that can be overridden:

• OnEarlyInitializeMelon : Called when the Melon is registered. Executes

before the Melon's info is printed to the console.

This callback may run before the Support Module is loaded.

Do not reference any game/Unity members in this callback or override

OnInitializeMelon instead.

• OnInitializeMelon : Called after the Melon was registered. This callback

waits until MelonLoader has fully initialized

It is safe to make any game/Unity references from and after this callback.

• OnLateInitializeMelon : Called after OnInitializeMelon . This

callback waits until Unity has invoked the first 'Start' messages.

• OnDeinitializeMelon : Called before the Melon is unregistered. Also called

before the game is closed.

• OnUpdate : Called once per frame.

• OnFixedUpdate : Called every 0.02 seconds, unless

Time.fixedDeltaTime has a different value. It is recommended to do all

important Physics loops inside this Callback.

• OnLateUpdate : Called once per frame after all OnUpdate callbacks have

finished.

• OnGUI : Called at every IMGUI event. Only use this for drawing IMGUI

Elements.

• OnApplicationQuit : Called when the game is told to close.

• OnSceneWasLoaded : Called when a new Scene is loaded.

• OnSceneWasInitialized : Called once the active Scene is fully initialized.

Quick Start https://melonwiki.xyz/#/modders/quickstart

6 of 14 27/09/2024, 20:57

https://melonwiki.xyz/#/modders/quickstart?id=melon-callbacks
https://melonwiki.xyz/#/modders/quickstart?id=melon-callbacks
https://melonwiki.xyz/#/modders/quickstart?id=melon-callbacks
https://docs.unity3d.com/Manual/GUIScriptingGuide.html
https://docs.unity3d.com/Manual/GUIScriptingGuide.html

• OnSceneWasUnloaded : Called once a Scene unloads.

• OnPreferencesSaved : Called when Melon Preferences get saved.

• OnPreferencesLoaded : Called when Melon Preferences get loaded.

The following example shows how to implement those callbacks:

Melon Events

Some callbacks mentioned in the previous paragraph are just shorthand for

MelonLoader's global MelonEvents.

MelonEvents are special events that Melons can subscribe to without having to

worry about deinitialization.

 buildIndex

 LoggerInstance

using MelonLoader;

namespace MyProject

{

public class MyMod : MelonMod

{

public override void OnSceneWasLoaded(int , string

{

.Msg($"Scene {sceneName} with build index

}

}

}

cs

Quick Start https://melonwiki.xyz/#/modders/quickstart

7 of 14 27/09/2024, 20:57

https://melonwiki.xyz/#/modders/quickstart?id=melon-events
https://melonwiki.xyz/#/modders/quickstart?id=melon-events
https://melonwiki.xyz/#/modders/quickstart?id=melon-events

MelonEvents were programmed to automatically dispose any subscribtions from

deinitialized Melons.

The advantage of using MelonEvents instead of virtual callbacks is the ability to

subscribe to events with a custom priority.

This is useful in cases your callback has to run earlier/later than a callback from

any other mod.

Another advantage of MelonEvents is the ability to subscribe to events in other

classes which can help keeping a cleaner mod structure.

Most global MelonEvents can be found in the public

MelonLoader.MelonEvents class.

The following example references the UnityEngine.IMGUIModule

assembly.

This example shows how to draw a GUI element on top of most other mods

through a MelonEvent:

 MelonEvents OnGUI DrawMenu

public class MyMod : MelonMod

{

public override void OnInitializeMelon()

{

. .Subscribe(, 100); // The higher the value, the low

}

private void DrawMenu()

cs

Quick Start https://melonwiki.xyz/#/modders/quickstart

8 of 14 27/09/2024, 20:57

Logging

In modding, logging is very important for making the mod users aware of what your

mod is doing, but also for diagnosing issues.

Fortunately, MelonLoader has it's own logging system which is also available to

mods.

Any MelonMod has it's own logger instance which can be accessed through the

LoggerInstance property:

In order to access the logger instance from a static method or from another class,

you'll have to use a singleton for your mod class.

Fortunately, MelonLoader comes with a generic singleton class for mod classes,

namely Melon<T> where T is your mod class.

Through Melon<T> , you can access your mod instance and your logger instance

 GUI

{

.Box(new Rect(0, 0, 300, 500), "My Menu");

}

}

 LoggerInstance

public override void OnInitializeMelon()

{

.Msg("Hello World!");

}

cs

Quick Start https://melonwiki.xyz/#/modders/quickstart

9 of 14 27/09/2024, 20:57

https://melonwiki.xyz/#/modders/quickstart?id=logging
https://melonwiki.xyz/#/modders/quickstart?id=logging
https://melonwiki.xyz/#/modders/quickstart?id=logging

from anywhere.

Assembly References

As seen in the previous OnGUI example, calling game/Unity methods is as simple

as in a normal unity script.

However, compared to Unity, you have to reference all the game and Unity

assemblies manually.

For games using the Mono runtime, all the game/Unity assemblies can be found

in [Game Directory]\[Game Name]_data\Managed\ .

For games using the IL2CPP runtime, all the game/Unity assemblies can be found

in [Game Directory]\MelonLoader\Managed\ (make sure you have ran the

 Melon MyMod Logger

public class MyMod : MelonMod

{

public override void OnInitializeMelon()

{

HelloWorld();

}

public static void HelloWorld()

{

< >. .Msg("Hello World from a static method!"

}

}

cs

Quick Start https://melonwiki.xyz/#/modders/quickstart

10 of 14 27/09/2024, 20:57

https://melonwiki.xyz/#/modders/quickstart?id=assembly-references
https://melonwiki.xyz/#/modders/quickstart?id=assembly-references
https://melonwiki.xyz/#/modders/quickstart?id=assembly-references
https://www.mono-project.com/
https://www.mono-project.com/

game with MelonLoader at least once!).

Since IL2CPP converts all game assemblies to C++, MelonLoader is using

Il2CppInterop, an IL2CPP proxy assembly generator which allows us to use

IL2CPP assemblies from C#. Before we can use any assemblies generated by the

Unhollower, it's required to reference the following assemblies first:

• Il2Cppmscorlib.dll

• Il2CppInterop.Common.dll

• Il2CppInterop.Runtime.dll

At this point, you're ready to make your first functional Melon.

Basic Mod Example

The following example mod references the UnityEngine.CoreModule ,

UnityEngine.InputLegacyModule and UnityEngine.IMGUIModule

assemblies.

This example mod allows the user to freeze and unfreeze the game by pressing

the spacebar:

using UnityEngine;

using MelonLoader;

[assembly: MelonInfo(typeof(TimeFreezer TimeFreezerMod.), "Time Freezer"

cs

Quick Start https://melonwiki.xyz/#/modders/quickstart

11 of 14 27/09/2024, 20:57

https://github.com/BepInEx/Il2CppInterop
https://github.com/BepInEx/Il2CppInterop
https://melonwiki.xyz/#/modders/quickstart?id=basic-mod-example
https://melonwiki.xyz/#/modders/quickstart?id=basic-mod-example
https://melonwiki.xyz/#/modders/quickstart?id=basic-mod-example

 freezeToggleKey

 frozen

 baseTimeScale

 freezeToggleKey KeyCode Space

Input freezeToggleKey

 GUI

namespace TimeFreezer

{

public class TimeFreezerMod : MelonMod

{

private static KeyCode ;

private static bool ;

private static float ;

public override void OnEarlyInitializeMelon()

{

= . ;

}

public override void OnLateUpdate()

{

if (.GetKeyDown())

{

ToggleFreeze();

}

}

public static void DrawFrozenText()

{

.Label(new Rect(20, 20, 1000, 200), "<color=cyan><size=100>Frozen<

}

private static void ToggleFreeze()

{

Quick Start https://melonwiki.xyz/#/modders/quickstart

12 of 14 27/09/2024, 20:57

 frozen frozen

frozen

 Melon TimeFreezerMod Logger

 MelonEvents OnGUI DrawFrozenText

 baseTimeScale Time timeScale

 Time timeScale

 Melon TimeFreezerMod Logger

 MelonEvents OnGUI DrawFrozenText

 Time timeScale baseTimeScale

frozen

= ! ;

if ()

{

< >. .Msg("Freezing");

. .Subscribe(, 100); // Register the 'F

= . ; // Save the original time scale befo

. = 0;

}

else

{

< >. .Msg("Unfreezing");

. .Unsubscribe(); // Unregister the 'Fr

. = ; // Reset the time scale to what it w

}

}

public override void OnDeinitializeMelon()

{

if ()

{

ToggleFreeze(); // Unfreeze the game in case the melon gets unregist

}

}

}

}

Quick Start https://melonwiki.xyz/#/modders/quickstart

13 of 14 27/09/2024, 20:57

Quick Start https://melonwiki.xyz/#/modders/quickstart

14 of 14 27/09/2024, 20:57

