Files
flutter-rimworld-modman/lib/modloader.dart

635 lines
18 KiB
Dart

import 'dart:io';
import 'package:xml/xml.dart';
const root = r'C:/Users/Administrator/Seafile/Games-Rimworld';
const modsRoot = '$root/294100';
const configRoot = '$root/AppData/RimWorld by Ludeon Studios/Config';
const configPath = '$configRoot/ModsConfig.xml';
XmlElement findCaseInsensitive(XmlElement element, String name) {
return element.childElements.firstWhere(
(e) => e.name.local.toLowerCase() == name,
);
}
XmlElement findCaseInsensitiveDoc(XmlDocument document, String name) {
name = name.toLowerCase();
return document.childElements.firstWhere(
(e) => e.name.local.toLowerCase() == name,
);
}
class Mod {
final String name; // ModMetaData.name
final String id; // ModMetaData.packageId
final String path; // figure it out
final List<String> versions; // ModMetaData.supportedVersions
final String description; // ModMetaData.description
final List<String>
hardDependencies; // ModMetaData.modDependencies - this is a li with packageId, displayName, steamWorkshopUrl and downloadUrl
final List<String> softDependencies; // ModMetaData.loadAfter
final List<String> incompatabilities; // ModMetaData.incompatibleWith
final bool
enabled; // ConfigFile.mods.firstWhere((mod) => mod.id == id).enabled
final int size; // Count of files in the mod directory
Mod({
required this.name,
required this.id,
required this.path,
required this.versions,
required this.description,
required this.hardDependencies,
required this.softDependencies,
required this.incompatabilities,
required this.enabled,
required this.size,
});
static Mod fromDirectory(String path, {bool skipFileCount = false}) {
final stopwatch = Stopwatch()..start();
final aboutFile = File('$path/About/About.xml');
if (!aboutFile.existsSync()) {
throw Exception('About.xml file does not exist in $aboutFile');
}
final aboutXml = XmlDocument.parse(aboutFile.readAsStringSync());
final xmlTime = stopwatch.elapsedMilliseconds;
late final XmlElement metadata;
try {
metadata = findCaseInsensitiveDoc(aboutXml, 'ModMetaData');
} catch (e) {
throw Exception(
'Error: ModMetaData element is missing in About.xml ($aboutFile). Original error: $e',
);
}
late final String name;
try {
name = metadata.findElements('name').first.innerText;
} catch (e) {
throw Exception(
'Error: name element is missing in ModMetaData ($aboutFile). Original error: $e',
);
}
late final String id;
try {
id = metadata.findElements('packageId').first.innerText.toLowerCase();
} catch (e) {
throw Exception(
'Error: packageId element is missing in ModMetaData ($aboutFile). Original error: $e',
);
}
late final List<String> versions;
try {
versions =
metadata
.findElements('supportedVersions')
.first
.findElements('li')
.map((e) => e.innerText)
.toList();
} catch (e) {
throw Exception(
'Error: supportedVersions or li elements are missing in ModMetaData ($aboutFile). Original error: $e',
);
}
String description = '';
try {
description = metadata.findElements('description').first.innerText;
} catch (e) {
// Silent error for optional element
}
List<String> hardDependencies = [];
try {
hardDependencies =
metadata
.findElements('modDependenciesByVersion')
.last
.findElements('li')
.map(
(e) =>
e.findElements('packageId').first.innerText.toLowerCase(),
)
.toList();
} catch (e) {
// Silent error for optional element
}
List<String> softDependencies = [];
try {
softDependencies =
metadata
.findElements('loadAfter')
.first
.findElements('li')
.map((e) => e.innerText.toLowerCase())
.toList();
} catch (e) {
// Silent error for optional element
}
List<String> incompatabilities = [];
try {
incompatabilities =
metadata
.findElements('incompatibleWith')
.first
.findElements('li')
.map((e) => e.innerText.toLowerCase())
.toList();
} catch (e) {
// Silent error for optional element
}
final metadataTime = stopwatch.elapsedMilliseconds - xmlTime;
int size = 0;
if (!skipFileCount) {
size =
Directory(path)
.listSync(recursive: true)
.where(
(entity) =>
!entity.path
.split(Platform.pathSeparator)
.last
.startsWith('.'),
)
.length;
}
final fileCountTime =
stopwatch.elapsedMilliseconds - metadataTime - xmlTime;
final totalTime = stopwatch.elapsedMilliseconds;
// Uncomment for detailed timing
print(
'Mod $name timing: XML=${xmlTime}ms, Metadata=${metadataTime}ms, FileCount=${fileCountTime}ms, Total=${totalTime}ms',
);
return Mod(
name: name,
id: id,
path: path,
versions: versions,
description: description,
hardDependencies: hardDependencies,
softDependencies: softDependencies,
incompatabilities: incompatabilities,
enabled: false,
size: size,
);
}
}
class ModList {
final String path;
Map<String, Mod> mods = {};
ModList({required this.path});
Stream<Mod> load({bool skipFileCount = false}) async* {
final stopwatch = Stopwatch()..start();
final directory = Directory(path);
print('Loading configuration from: $path');
if (directory.existsSync()) {
final List<FileSystemEntity> entities = directory.listSync();
final List<String> modDirectories =
entities.whereType<Directory>().map((dir) => dir.path).toList();
print(
'Found ${modDirectories.length} mod directories (${stopwatch.elapsedMilliseconds}ms)',
);
int processedCount = 0;
int totalMods = modDirectories.length;
for (final modDir in modDirectories) {
try {
final modStart = stopwatch.elapsedMilliseconds;
final mod = Mod.fromDirectory(modDir, skipFileCount: skipFileCount);
mods[mod.id] = mod;
processedCount++;
final modTime = stopwatch.elapsedMilliseconds - modStart;
if (processedCount % 50 == 0 || processedCount == totalMods) {
print(
'Progress: Loaded $processedCount/$totalMods mods (${stopwatch.elapsedMilliseconds}ms, avg ${stopwatch.elapsedMilliseconds / processedCount}ms per mod)',
);
}
yield mod;
} catch (e) {
print('Error loading mod from directory: $modDir');
print('Error: $e');
}
}
final totalTime = stopwatch.elapsedMilliseconds;
print(
'Loading complete! Loaded ${mods.length} mods in ${totalTime}ms (${totalTime / mods.length}ms per mod)',
);
} else {
print('Mods root directory does not exist: $path');
}
}
// Build a directed graph of mod dependencies
Map<String, Set<String>> buildDependencyGraph() {
// Graph where graph[A] contains B if A depends on B (B must load before A)
final Map<String, Set<String>> graph = {};
// Initialize the graph with empty dependency sets for all mods
for (final mod in mods.values) {
graph[mod.id] = Set<String>();
}
// Add hard dependencies to the graph
for (final mod in mods.values) {
for (final dependency in mod.hardDependencies) {
// Only add if the dependency exists in our loaded mods
if (mods.containsKey(dependency)) {
graph[mod.id]!.add(dependency);
}
}
}
return graph;
}
// Build a graph for soft dependencies
Map<String, Set<String>> buildSoftDependencyGraph() {
final Map<String, Set<String>> graph = {};
// Initialize the graph with empty sets
for (final mod in mods.values) {
graph[mod.id] = Set<String>();
}
// Add soft dependencies
for (final mod in mods.values) {
for (final dependency in mod.softDependencies) {
// Only add if the dependency exists in our loaded mods
if (mods.containsKey(dependency)) {
graph[mod.id]!.add(dependency);
}
}
}
return graph;
}
// Detect cycles in the dependency graph (which would make a valid loading order impossible)
List<String>? detectCycle(Map<String, Set<String>> graph) {
// Track visited nodes and the current path
Set<String> visited = {};
Set<String> currentPath = {};
List<String> cycleNodes = [];
bool dfs(String node, List<String> path) {
if (currentPath.contains(node)) {
// Found a cycle
int cycleStart = path.indexOf(node);
cycleNodes = path.sublist(cycleStart);
cycleNodes.add(node); // Close the cycle
return true;
}
if (visited.contains(node)) {
return false;
}
visited.add(node);
currentPath.add(node);
path.add(node);
for (final dependency in graph[node] ?? {}) {
if (dfs(dependency, path)) {
return true;
}
}
currentPath.remove(node);
return false;
}
for (final node in graph.keys) {
if (!visited.contains(node)) {
if (dfs(node, [])) {
return cycleNodes;
}
}
}
return null; // No cycle found
}
// Perform a topological sort using Kahn's algorithm
List<String> topologicalSort(Map<String, Set<String>> graph) {
// Create a copy of the graph to work with
final Map<String, Set<String>> graphCopy = {};
for (final entry in graph.entries) {
graphCopy[entry.key] = Set<String>.from(entry.value);
}
// Calculate in-degree of each node (number of edges coming in)
Map<String, int> inDegree = {};
for (final node in graphCopy.keys) {
inDegree[node] = 0;
}
for (final dependencies in graphCopy.values) {
for (final dep in dependencies) {
inDegree[dep] = (inDegree[dep] ?? 0) + 1;
}
}
// Start with nodes that have no dependencies (in-degree = 0)
List<String> nodesWithNoDependencies = [];
for (final node in inDegree.keys) {
if (inDegree[node] == 0) {
nodesWithNoDependencies.add(node);
}
}
// Result will store the topological order
List<String> result = [];
// Process nodes with no dependencies
while (nodesWithNoDependencies.isNotEmpty) {
final node = nodesWithNoDependencies.removeLast();
result.add(node);
// For each node that depends on this one, decrement its in-degree
final dependents = [];
for (final entry in graphCopy.entries) {
if (entry.value.contains(node)) {
dependents.add(entry.key);
}
}
for (final dependent in dependents) {
graphCopy[dependent]!.remove(node);
inDegree[dependent] = inDegree[dependent]! - 1;
if (inDegree[dependent] == 0) {
nodesWithNoDependencies.add(dependent);
}
}
}
// Check if we have a valid topological sort
if (result.length != graph.keys.length) {
print(
"Warning: Cyclic dependency detected, topological sort may be incomplete",
);
// Add any remaining nodes to keep all mods
for (final node in graph.keys) {
if (!result.contains(node)) {
result.add(node);
}
}
}
return result.reversed.toList(); // Reverse to get correct load order
}
// Adjust the order to respect soft dependencies where possible
List<String> adjustForSoftDependencies(
List<String> hardOrder,
Map<String, Set<String>> softGraph,
) {
// Create a map of positions in the hard dependency order
Map<String, int> positions = {};
for (int i = 0; i < hardOrder.length; i++) {
positions[hardOrder[i]] = i;
}
// For each mod, try to move its soft dependencies earlier in the order
bool changed = true;
while (changed) {
changed = false;
for (final modId in hardOrder) {
final softDeps = softGraph[modId] ?? {};
for (final softDep in softDeps) {
// If the soft dependency is loaded after the mod, try to move it earlier
if (positions.containsKey(softDep) &&
positions[softDep]! > positions[modId]!) {
// Find where we can move the soft dependency to
int targetPos = positions[modId]!;
// Move the soft dependency just before the mod
hardOrder.removeAt(positions[softDep]!);
hardOrder.insert(targetPos, softDep);
// Update positions
for (int i = 0; i < hardOrder.length; i++) {
positions[hardOrder[i]] = i;
}
changed = true;
break;
}
}
if (changed) break;
}
}
return hardOrder;
}
// Check for incompatibilities in the current mod list
List<List<String>> findIncompatibilities() {
List<List<String>> incompatiblePairs = [];
for (final mod in mods.values) {
for (final incompatibility in mod.incompatabilities) {
if (mods.containsKey(incompatibility)) {
incompatiblePairs.add([mod.id, incompatibility]);
}
}
}
return incompatiblePairs;
}
// Sort mods based on dependencies and return the sorted list
List<String> sortMods() {
print("Building dependency graph...");
final hardGraph = buildDependencyGraph();
// Check for cycles in hard dependencies
final cycle = detectCycle(hardGraph);
if (cycle != null) {
print(
"Warning: Cycle in hard dependencies detected: ${cycle.join(" -> ")}",
);
print("Will attempt to break cycle to produce a valid load order");
}
print("Performing topological sort for hard dependencies...");
final hardOrder = topologicalSort(hardGraph);
print("Adjusting for soft dependencies...");
final softGraph = buildSoftDependencyGraph();
final finalOrder = adjustForSoftDependencies(hardOrder, softGraph);
// Check for incompatibilities
final incompatibilities = findIncompatibilities();
if (incompatibilities.isNotEmpty) {
print("Warning: Incompatible mods detected:");
for (final pair in incompatibilities) {
print(" - ${mods[pair[0]]?.name} and ${mods[pair[1]]?.name}");
}
}
print(
"Sorting complete. Final mod order contains ${finalOrder.length} mods.",
);
return finalOrder;
}
// Get a list of mods in the proper load order
List<Mod> getModsInLoadOrder() {
final orderedIds = sortMods();
return orderedIds.map((id) => mods[id]!).toList();
}
}
// Add a method to ConfigFile to fix the mod order
class ConfigFile {
final String path;
List<Mod> mods;
ConfigFile({required this.path, this.mods = const []});
void load() {
final file = File(path);
print('Loading configuration from: $path');
final xmlString = file.readAsStringSync();
print('XML content read successfully.');
final xmlDocument = XmlDocument.parse(xmlString);
print('XML document parsed successfully.');
final modConfigData = xmlDocument.findElements("ModsConfigData").first;
print('Found ModsConfigData element.');
final modsElement = modConfigData.findElements("activeMods").first;
print('Found activeMods element.');
final modElements = modsElement.findElements("li");
print('Found ${modElements.length} active mods.');
mods = [];
for (final modElement in modElements) {
final modId = modElement.innerText.toLowerCase();
// We'll populate with dummy mods for now, they'll be replaced later
mods.add(
Mod(
name: modId,
id: modId,
path: '',
versions: [],
description: '',
hardDependencies: [],
softDependencies: [],
incompatabilities: [],
enabled: true,
size: 0,
),
);
}
print('Loaded ${mods.length} mods from config file.');
}
// Save the current mod order back to the config file
void save() {
final file = File(path);
print('Saving configuration to: $path');
// Create a backup just in case
final backupPath = '$path.bak';
file.copySync(backupPath);
print('Created backup at: $backupPath');
try {
// Load the existing XML
final xmlString = file.readAsStringSync();
final xmlDocument = XmlDocument.parse(xmlString);
// Get the ModsConfigData element
final modConfigData = xmlDocument.findElements("ModsConfigData").first;
// Get the activeMods element
final modsElement = modConfigData.findElements("activeMods").first;
// Clear existing mod entries
modsElement.children.clear();
// Add mods in the new order
for (final mod in mods) {
final liElement = XmlElement(XmlName('li'));
liElement.innerText = mod.id;
modsElement.children.add(liElement);
}
// Write the updated XML back to the file
file.writeAsStringSync(xmlDocument.toXmlString(pretty: true));
print('Configuration saved successfully with ${mods.length} mods.');
} catch (e) {
print('Error saving configuration: $e');
print('Original configuration preserved at: $backupPath');
}
}
// Fix the load order of mods according to dependencies
void fixLoadOrder(ModList modList) {
print("Fixing mod load order...");
// Get the ordered mod IDs from the mod list
final orderedIds = modList.sortMods();
// Reorder the current mods list according to the dependency-sorted order
// We only modify mods that exist in both the configFile and the modList
List<Mod> orderedMods = [];
Set<String> addedIds = {};
// First add mods in the sorted order
for (final id in orderedIds) {
final modIndex = mods.indexWhere((m) => m.id == id);
if (modIndex >= 0) {
orderedMods.add(mods[modIndex]);
addedIds.add(id);
}
}
// Then add any mods that weren't in the sorted list
for (final mod in mods) {
if (!addedIds.contains(mod.id)) {
orderedMods.add(mod);
}
}
// Replace the current mods list with the ordered one
mods = orderedMods;
print(
"Load order fixed. ${mods.length} mods are now in dependency-sorted order.",
);
}
}