(svn r18364) -Codechange: move the pathfinders and their related files into a separate directory

This commit is contained in:
rubidium
2009-12-01 22:45:39 +00:00
parent 501d2ba0d8
commit 2f3053508d
37 changed files with 151 additions and 128 deletions

View File

@@ -0,0 +1,306 @@
/* $Id$ */
/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file aystar.cpp Implementation of A*. */
/*
* This file has the core function for AyStar
* AyStar is a fast pathfinding routine and is used for things like
* AI_pathfinding and Train_pathfinding.
* For more information about AyStar (A* Algorithm), you can look at
* http://en.wikipedia.org/wiki/A-star_search_algorithm
*/
/*
* Friendly reminder:
* Call (AyStar).free() when you are done with Aystar. It reserves a lot of memory
* And when not free'd, it can cause system-crashes.
* Also remember that when you stop an algorithm before it is finished, your
* should call clear() yourself!
*/
#include "../../stdafx.h"
#include "../../core/alloc_func.hpp"
#include "aystar.h"
int _aystar_stats_open_size;
int _aystar_stats_closed_size;
/* This looks in the Hash if a node exists in ClosedList
* If so, it returns the PathNode, else NULL */
static PathNode *AyStarMain_ClosedList_IsInList(AyStar *aystar, const AyStarNode *node)
{
return (PathNode*)Hash_Get(&aystar->ClosedListHash, node->tile, node->direction);
}
/* This adds a node to the ClosedList
* It makes a copy of the data */
static void AyStarMain_ClosedList_Add(AyStar *aystar, const PathNode *node)
{
/* Add a node to the ClosedList */
PathNode *new_node = MallocT<PathNode>(1);
*new_node = *node;
Hash_Set(&aystar->ClosedListHash, node->node.tile, node->node.direction, new_node);
}
/* Checks if a node is in the OpenList
* If so, it returns the OpenListNode, else NULL */
static OpenListNode *AyStarMain_OpenList_IsInList(AyStar *aystar, const AyStarNode *node)
{
return (OpenListNode*)Hash_Get(&aystar->OpenListHash, node->tile, node->direction);
}
/* Gets the best node from OpenList
* returns the best node, or NULL of none is found
* Also it deletes the node from the OpenList */
static OpenListNode *AyStarMain_OpenList_Pop(AyStar *aystar)
{
/* Return the item the Queue returns.. the best next OpenList item. */
OpenListNode *res = (OpenListNode*)aystar->OpenListQueue.pop(&aystar->OpenListQueue);
if (res != NULL) {
Hash_Delete(&aystar->OpenListHash, res->path.node.tile, res->path.node.direction);
}
return res;
}
/* Adds a node to the OpenList
* It makes a copy of node, and puts the pointer of parent in the struct */
static void AyStarMain_OpenList_Add(AyStar *aystar, PathNode *parent, const AyStarNode *node, int f, int g)
{
/* Add a new Node to the OpenList */
OpenListNode *new_node = MallocT<OpenListNode>(1);
new_node->g = g;
new_node->path.parent = parent;
new_node->path.node = *node;
Hash_Set(&aystar->OpenListHash, node->tile, node->direction, new_node);
/* Add it to the queue */
aystar->OpenListQueue.push(&aystar->OpenListQueue, new_node, f);
}
/*
* Checks one tile and calculate his f-value
* return values:
* AYSTAR_DONE : indicates we are done
*/
static int AyStarMain_CheckTile(AyStar *aystar, AyStarNode *current, OpenListNode *parent)
{
int new_f, new_g, new_h;
PathNode *closedlist_parent;
OpenListNode *check;
/* Check the new node against the ClosedList */
if (AyStarMain_ClosedList_IsInList(aystar, current) != NULL) return AYSTAR_DONE;
/* Calculate the G-value for this node */
new_g = aystar->CalculateG(aystar, current, parent);
/* If the value was INVALID_NODE, we don't do anything with this node */
if (new_g == AYSTAR_INVALID_NODE) return AYSTAR_DONE;
/* There should not be given any other error-code.. */
assert(new_g >= 0);
/* Add the parent g-value to the new g-value */
new_g += parent->g;
if (aystar->max_path_cost != 0 && (uint)new_g > aystar->max_path_cost) return AYSTAR_DONE;
/* Calculate the h-value */
new_h = aystar->CalculateH(aystar, current, parent);
/* There should not be given any error-code.. */
assert(new_h >= 0);
/* The f-value if g + h */
new_f = new_g + new_h;
/* Get the pointer to the parent in the ClosedList (the currentone is to a copy of the one in the OpenList) */
closedlist_parent = AyStarMain_ClosedList_IsInList(aystar, &parent->path.node);
/* Check if this item is already in the OpenList */
check = AyStarMain_OpenList_IsInList(aystar, current);
if (check != NULL) {
uint i;
/* Yes, check if this g value is lower.. */
if (new_g > check->g) return AYSTAR_DONE;
aystar->OpenListQueue.del(&aystar->OpenListQueue, check, 0);
/* It is lower, so change it to this item */
check->g = new_g;
check->path.parent = closedlist_parent;
/* Copy user data, will probably have changed */
for (i = 0; i < lengthof(current->user_data); i++) {
check->path.node.user_data[i] = current->user_data[i];
}
/* Readd him in the OpenListQueue */
aystar->OpenListQueue.push(&aystar->OpenListQueue, check, new_f);
} else {
/* A new node, add him to the OpenList */
AyStarMain_OpenList_Add(aystar, closedlist_parent, current, new_f, new_g);
}
return AYSTAR_DONE;
}
/*
* This function is the core of AyStar. It handles one item and checks
* his neighbour items. If they are valid, they are added to be checked too.
* return values:
* AYSTAR_EMPTY_OPENLIST : indicates all items are tested, and no path
* has been found.
* AYSTAR_LIMIT_REACHED : Indicates that the max_nodes limit has been
* reached.
* AYSTAR_FOUND_END_NODE : indicates we found the end. Path_found now is true, and in path is the path found.
* AYSTAR_STILL_BUSY : indicates we have done this tile, did not found the path yet, and have items left to try.
*/
static int AyStarMain_Loop(AyStar *aystar)
{
int i, r;
/* Get the best node from OpenList */
OpenListNode *current = AyStarMain_OpenList_Pop(aystar);
/* If empty, drop an error */
if (current == NULL) return AYSTAR_EMPTY_OPENLIST;
/* Check for end node and if found, return that code */
if (aystar->EndNodeCheck(aystar, current) == AYSTAR_FOUND_END_NODE) {
if (aystar->FoundEndNode != NULL)
aystar->FoundEndNode(aystar, current);
free(current);
return AYSTAR_FOUND_END_NODE;
}
/* Add the node to the ClosedList */
AyStarMain_ClosedList_Add(aystar, &current->path);
/* Load the neighbours */
aystar->GetNeighbours(aystar, current);
/* Go through all neighbours */
for (i = 0; i < aystar->num_neighbours; i++) {
/* Check and add them to the OpenList if needed */
r = aystar->checktile(aystar, &aystar->neighbours[i], current);
}
/* Free the node */
free(current);
if (aystar->max_search_nodes != 0 && Hash_Size(&aystar->ClosedListHash) >= aystar->max_search_nodes) {
/* We've expanded enough nodes */
return AYSTAR_LIMIT_REACHED;
} else {
/* Return that we are still busy */
return AYSTAR_STILL_BUSY;
}
}
/*
* This function frees the memory it allocated
*/
static void AyStarMain_Free(AyStar *aystar)
{
aystar->OpenListQueue.free(&aystar->OpenListQueue, false);
/* 2nd argument above is false, below is true, to free the values only
* once */
delete_Hash(&aystar->OpenListHash, true);
delete_Hash(&aystar->ClosedListHash, true);
#ifdef AYSTAR_DEBUG
printf("[AyStar] Memory free'd\n");
#endif
}
/*
* This function make the memory go back to zero
* This function should be called when you are using the same instance again.
*/
void AyStarMain_Clear(AyStar *aystar)
{
/* Clean the Queue, but not the elements within. That will be done by
* the hash. */
aystar->OpenListQueue.clear(&aystar->OpenListQueue, false);
/* Clean the hashes */
clear_Hash(&aystar->OpenListHash, true);
clear_Hash(&aystar->ClosedListHash, true);
#ifdef AYSTAR_DEBUG
printf("[AyStar] Cleared AyStar\n");
#endif
}
/*
* This is the function you call to run AyStar.
* return values:
* AYSTAR_FOUND_END_NODE : indicates we found an end node.
* AYSTAR_NO_PATH : indicates that there was no path found.
* AYSTAR_STILL_BUSY : indicates we have done some checked, that we did not found the path yet, and that we still have items left to try.
* When the algorithm is done (when the return value is not AYSTAR_STILL_BUSY)
* aystar->clear() is called. Note that when you stop the algorithm halfway,
* you should still call clear() yourself!
*/
int AyStarMain_Main(AyStar *aystar)
{
int r, i = 0;
/* Loop through the OpenList
* Quit if result is no AYSTAR_STILL_BUSY or is more than loops_per_tick */
while ((r = aystar->loop(aystar)) == AYSTAR_STILL_BUSY && (aystar->loops_per_tick == 0 || ++i < aystar->loops_per_tick)) { }
#ifdef AYSTAR_DEBUG
switch (r) {
case AYSTAR_FOUND_END_NODE: printf("[AyStar] Found path!\n"); break;
case AYSTAR_EMPTY_OPENLIST: printf("[AyStar] OpenList run dry, no path found\n"); break;
case AYSTAR_LIMIT_REACHED: printf("[AyStar] Exceeded search_nodes, no path found\n"); break;
default: break;
}
#endif
if (r != AYSTAR_STILL_BUSY) {
/* We're done, clean up */
_aystar_stats_open_size = aystar->OpenListHash.size;
_aystar_stats_closed_size = aystar->ClosedListHash.size;
aystar->clear(aystar);
}
switch (r) {
case AYSTAR_FOUND_END_NODE: return AYSTAR_FOUND_END_NODE;
case AYSTAR_EMPTY_OPENLIST:
case AYSTAR_LIMIT_REACHED: return AYSTAR_NO_PATH;
default: return AYSTAR_STILL_BUSY;
}
}
/*
* Adds a node from where to start an algorithm. Multiple nodes can be added
* if wanted. You should make sure that clear() is called before adding nodes
* if the AyStar has been used before (though the normal main loop calls
* clear() automatically when the algorithm finishes
* g is the cost for starting with this node.
*/
static void AyStarMain_AddStartNode(AyStar *aystar, AyStarNode *start_node, uint g)
{
#ifdef AYSTAR_DEBUG
printf("[AyStar] Starting A* Algorithm from node (%d, %d, %d)\n",
TileX(start_node->tile), TileY(start_node->tile), start_node->direction);
#endif
AyStarMain_OpenList_Add(aystar, NULL, start_node, 0, g);
}
void init_AyStar(AyStar *aystar, Hash_HashProc hash, uint num_buckets)
{
/* Allocated the Hash for the OpenList and ClosedList */
init_Hash(&aystar->OpenListHash, hash, num_buckets);
init_Hash(&aystar->ClosedListHash, hash, num_buckets);
/* Set up our sorting queue
* BinaryHeap allocates a block of 1024 nodes
* When thatone gets full it reserves an otherone, till this number
* That is why it can stay this high */
init_BinaryHeap(&aystar->OpenListQueue, 102400);
aystar->addstart = AyStarMain_AddStartNode;
aystar->main = AyStarMain_Main;
aystar->loop = AyStarMain_Loop;
aystar->free = AyStarMain_Free;
aystar->clear = AyStarMain_Clear;
aystar->checktile = AyStarMain_CheckTile;
}

181
src/pathfinder/npf/aystar.h Normal file
View File

@@ -0,0 +1,181 @@
/* $Id$ */
/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file aystar.h
* This file has the header for AyStar
* AyStar is a fast pathfinding routine and is used for things like
* AI_pathfinding and Train_pathfinding.
* For more information about AyStar (A* Algorithm), you can look at
* http://en.wikipedia.org/wiki/A-star_search_algorithm
*/
#ifndef AYSTAR_H
#define AYSTAR_H
#include "queue.h"
#include "../../tile_type.h"
#include "../../track_type.h"
//#define AYSTAR_DEBUG
enum {
AYSTAR_FOUND_END_NODE,
AYSTAR_EMPTY_OPENLIST,
AYSTAR_STILL_BUSY,
AYSTAR_NO_PATH,
AYSTAR_LIMIT_REACHED,
AYSTAR_DONE
};
enum{
AYSTAR_INVALID_NODE = -1,
};
struct AyStarNode {
TileIndex tile;
Trackdir direction;
uint user_data[2];
};
/* The resulting path has nodes looking like this. */
struct PathNode {
AyStarNode node;
/* The parent of this item */
PathNode *parent;
};
/* For internal use only
* We do not save the h-value, because it is only needed to calculate the f-value.
* h-value should _always_ be the distance left to the end-tile. */
struct OpenListNode {
int g;
PathNode path;
};
struct AyStar;
/*
* This function is called to check if the end-tile is found
* return values can be:
* AYSTAR_FOUND_END_NODE : indicates this is the end tile
* AYSTAR_DONE : indicates this is not the end tile (or direction was wrong)
*/
/*
* The 2nd parameter should be OpenListNode, and NOT AyStarNode. AyStarNode is
* part of OpenListNode and so it could be accessed without any problems.
* The good part about OpenListNode is, and how AIs use it, that you can
* access the parent of the current node, and so check if you, for example
* don't try to enter the file tile with a 90-degree curve. So please, leave
* this an OpenListNode, it works just fine -- TrueLight
*/
typedef int32 AyStar_EndNodeCheck(AyStar *aystar, OpenListNode *current);
/*
* This function is called to calculate the G-value for AyStar Algorithm.
* return values can be:
* AYSTAR_INVALID_NODE : indicates an item is not valid (e.g.: unwalkable)
* Any value >= 0 : the g-value for this tile
*/
typedef int32 AyStar_CalculateG(AyStar *aystar, AyStarNode *current, OpenListNode *parent);
/*
* This function is called to calculate the H-value for AyStar Algorithm.
* Mostly, this must result the distance (Manhattan way) between the
* current point and the end point
* return values can be:
* Any value >= 0 : the h-value for this tile
*/
typedef int32 AyStar_CalculateH(AyStar *aystar, AyStarNode *current, OpenListNode *parent);
/*
* This function request the tiles around the current tile and put them in tiles_around
* tiles_around is never resetted, so if you are not using directions, just leave it alone.
* Warning: never add more tiles_around than memory allocated for it.
*/
typedef void AyStar_GetNeighbours(AyStar *aystar, OpenListNode *current);
/*
* If the End Node is found, this function is called.
* It can do, for example, calculate the route and put that in an array
*/
typedef void AyStar_FoundEndNode(AyStar *aystar, OpenListNode *current);
/* For internal use, see aystar.cpp */
typedef void AyStar_AddStartNode(AyStar *aystar, AyStarNode *start_node, uint g);
typedef int AyStar_Main(AyStar *aystar);
typedef int AyStar_Loop(AyStar *aystar);
typedef int AyStar_CheckTile(AyStar *aystar, AyStarNode *current, OpenListNode *parent);
typedef void AyStar_Free(AyStar *aystar);
typedef void AyStar_Clear(AyStar *aystar);
struct AyStar {
/* These fields should be filled before initting the AyStar, but not changed
* afterwards (except for user_data and user_path)! (free and init again to change them) */
/* These should point to the application specific routines that do the
* actual work */
AyStar_CalculateG *CalculateG;
AyStar_CalculateH *CalculateH;
AyStar_GetNeighbours *GetNeighbours;
AyStar_EndNodeCheck *EndNodeCheck;
AyStar_FoundEndNode *FoundEndNode;
/* These are completely untouched by AyStar, they can be accesed by
* the application specific routines to input and output data.
* user_path should typically contain data about the resulting path
* afterwards, user_target should typically contain information about
* what where looking for, and user_data can contain just about
* everything */
void *user_path;
void *user_target;
uint user_data[10];
/* How many loops are there called before AyStarMain_Main gives
* control back to the caller. 0 = until done */
byte loops_per_tick;
/* If the g-value goes over this number, it stops searching
* 0 = infinite */
uint max_path_cost;
/* The maximum amount of nodes that will be expanded, 0 = infinite */
uint max_search_nodes;
/* These should be filled with the neighbours of a tile by
* GetNeighbours */
AyStarNode neighbours[12];
byte num_neighbours;
/* These will contain the methods for manipulating the AyStar. Only
* main() should be called externally */
AyStar_AddStartNode *addstart;
AyStar_Main *main;
AyStar_Loop *loop;
AyStar_Free *free;
AyStar_Clear *clear;
AyStar_CheckTile *checktile;
/* These will contain the open and closed lists */
/* The actual closed list */
Hash ClosedListHash;
/* The open queue */
Queue OpenListQueue;
/* An extra hash to speed up the process of looking up an element in
* the open list */
Hash OpenListHash;
};
int AyStarMain_Main(AyStar *aystar);
void AyStarMain_Clear(AyStar *aystar);
/* Initialize an AyStar. You should fill all appropriate fields before
* callling init_AyStar (see the declaration of AyStar for which fields are
* internal */
void init_AyStar(AyStar *aystar, Hash_HashProc hash, uint num_buckets);
#endif /* AYSTAR_H */

1120
src/pathfinder/npf/npf.cpp Normal file

File diff suppressed because it is too large Load Diff

151
src/pathfinder/npf/npf.h Normal file
View File

@@ -0,0 +1,151 @@
/* $Id$ */
/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file npf.h New A* pathfinder. */
#ifndef NPF_H
#define NPF_H
#include "aystar.h"
#include "../../station_type.h"
#include "../../rail_type.h"
#include "../../company_type.h"
#include "../../vehicle_type.h"
#include "../../tile_type.h"
#include "../../track_type.h"
#include "../../core/bitmath_func.hpp"
#include "../../transport_type.h"
/* mowing grass */
enum {
NPF_HASH_BITS = 12, ///< The size of the hash used in pathfinding. Just changing this value should be sufficient to change the hash size. Should be an even value.
/* Do no change below values */
NPF_HASH_SIZE = 1 << NPF_HASH_BITS,
NPF_HASH_HALFBITS = NPF_HASH_BITS / 2,
NPF_HASH_HALFMASK = (1 << NPF_HASH_HALFBITS) - 1
};
/* For new pathfinding. Define here so it is globally available without having
* to include npf.h */
enum {
NPF_TILE_LENGTH = 100
};
enum {
/** This penalty is the equivalent of "inifite", which means that paths that
* get this penalty will be chosen, but only if there is no other route
* without it. Be careful with not applying this penalty to often, or the
* total path cost might overflow..
* For now, this is just a Very Big Penalty, we might actually implement
* this in a nicer way :-)
*/
NPF_INFINITE_PENALTY = 1000 * NPF_TILE_LENGTH
};
/* Meant to be stored in AyStar.targetdata */
struct NPFFindStationOrTileData {
TileIndex dest_coords; ///< An indication of where the station is, for heuristic purposes, or the target tile
StationID station_index; ///< station index we're heading for, or INVALID_STATION when we're heading for a tile
bool reserve_path; ///< Indicates whether the found path should be reserved
const Vehicle *v; ///< The vehicle we are pathfinding for
};
/* Indices into AyStar.userdata[] */
enum {
NPF_TYPE = 0, ///< Contains a TransportTypes value
NPF_SUB_TYPE, ///< Contains the sub transport type
NPF_OWNER, ///< Contains an Owner value
NPF_RAILTYPES, ///< Contains a bitmask the compatible RailTypes of the engine when NPF_TYPE == TRANSPORT_RAIL. Unused otherwise.
};
/* Indices into AyStarNode.userdata[] */
enum {
NPF_TRACKDIR_CHOICE = 0, ///< The trackdir chosen to get here
NPF_NODE_FLAGS,
};
/* Flags for AyStarNode.userdata[NPF_NODE_FLAGS]. Use NPFGetBit() and NPFGetBit() to use them. */
enum NPFNodeFlag {
NPF_FLAG_SEEN_SIGNAL, ///< Used to mark that a signal was seen on the way, for rail only
NPF_FLAG_2ND_SIGNAL, ///< Used to mark that two signals were seen, rail only
NPF_FLAG_3RD_SIGNAL, ///< Used to mark that three signals were seen, rail only
NPF_FLAG_REVERSE, ///< Used to mark that this node was reached from the second start node, if applicable
NPF_FLAG_LAST_SIGNAL_RED, ///< Used to mark that the last signal on this path was red
NPF_FLAG_IGNORE_START_TILE, ///< Used to mark that the start tile is invalid, and searching should start from the second tile on
NPF_FLAG_TARGET_RESERVED, ///< Used to mark that the possible reservation target is already reserved
NPF_FLAG_IGNORE_RESERVED, ///< Used to mark that reserved tiles should be considered impassable
};
/* Meant to be stored in AyStar.userpath */
struct NPFFoundTargetData {
uint best_bird_dist; ///< The best heuristic found. Is 0 if the target was found
uint best_path_dist; ///< The shortest path. Is UINT_MAX if no path is found
Trackdir best_trackdir; ///< The trackdir that leads to the shortest path/closest birds dist
AyStarNode node; ///< The node within the target the search led us to
bool res_okay; ///< True if a path reservation could be made
};
/* These functions below are _not_ re-entrant, in favor of speed! */
/* Will search from the given tile and direction, for a route to the given
* station for the given transport type. See the declaration of
* NPFFoundTargetData above for the meaning of the result. */
NPFFoundTargetData NPFRouteToStationOrTile(TileIndex tile, Trackdir trackdir, bool ignore_start_tile, NPFFindStationOrTileData *target, TransportType type, uint sub_type, Owner owner, RailTypes railtypes);
/* Will search as above, but with two start nodes, the second being the
* reverse. Look at the NPF_FLAG_REVERSE flag in the result node to see which
* direction was taken (NPFGetBit(result.node, NPF_FLAG_REVERSE)) */
NPFFoundTargetData NPFRouteToStationOrTileTwoWay(TileIndex tile1, Trackdir trackdir1, bool ignore_start_tile1, TileIndex tile2, Trackdir trackdir2, bool ignore_start_tile2, NPFFindStationOrTileData *target, TransportType type, uint sub_type, Owner owner, RailTypes railtypes);
/* Will search a route to the closest depot. */
/* Search using breadth first. Good for little track choice and inaccurate
* heuristic, such as railway/road.*/
NPFFoundTargetData NPFRouteToDepotBreadthFirst(TileIndex tile, Trackdir trackdir, bool ignore_start_tile, TransportType type, uint sub_type, Owner owner, RailTypes railtypes);
/* Same as above but with two start nodes, the second being the reverse. Call
* NPFGetBit(result.node, NPF_FLAG_REVERSE) to see from which node the path
* orginated. All pathfs from the second node will have the given
* reverse_penalty applied (NPF_TILE_LENGTH is the equivalent of one full
* tile).
*/
NPFFoundTargetData NPFRouteToDepotBreadthFirstTwoWay(TileIndex tile1, Trackdir trackdir1, bool ignore_start_tile1, TileIndex tile2, Trackdir trackdir2, bool ignore_start_tile2, TransportType type, uint sub_type, Owner owner, RailTypes railtypes, uint reverse_penalty);
/* Search by trying each depot in order of Manhattan Distance. Good for lots
* of choices and accurate heuristics, such as water. */
NPFFoundTargetData NPFRouteToDepotTrialError(TileIndex tile, Trackdir trackdir, bool ignore_start_tile, TransportType type, uint sub_type, Owner owner, RailTypes railtypes);
/**
* Search for any safe tile using a breadth first search and try to reserve a path.
*/
NPFFoundTargetData NPFRouteToSafeTile(const struct Train *v, TileIndex tile, Trackdir trackdir, bool override_railtype);
void NPFFillWithOrderData(NPFFindStationOrTileData *fstd, Vehicle *v, bool reserve_path = false);
/*
* Functions to manipulate the various NPF related flags on an AyStarNode.
*/
/**
* Returns the current value of the given flag on the given AyStarNode.
*/
static inline bool NPFGetFlag(const AyStarNode *node, NPFNodeFlag flag)
{
return HasBit(node->user_data[NPF_NODE_FLAGS], flag);
}
/**
* Sets the given flag on the given AyStarNode to the given value.
*/
static inline void NPFSetFlag(AyStarNode *node, NPFNodeFlag flag, bool value)
{
SB(node->user_data[NPF_NODE_FLAGS], flag, 1, value);
}
#endif /* NPF_H */

View File

@@ -0,0 +1,577 @@
/* $Id$ */
/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file queue.cpp Implementation of the Queue/Hash. */
#include "../../stdafx.h"
#include "../../core/alloc_func.hpp"
#include "queue.h"
/*
* Insertion Sorter
*/
static void InsSort_Clear(Queue *q, bool free_values)
{
InsSortNode *node = q->data.inssort.first;
InsSortNode *prev;
while (node != NULL) {
if (free_values) free(node->item);
prev = node;
node = node->next;
free(prev);
}
q->data.inssort.first = NULL;
}
static void InsSort_Free(Queue *q, bool free_values)
{
q->clear(q, free_values);
}
static bool InsSort_Push(Queue *q, void *item, int priority)
{
InsSortNode *newnode = MallocT<InsSortNode>(1);
newnode->item = item;
newnode->priority = priority;
if (q->data.inssort.first == NULL ||
q->data.inssort.first->priority >= priority) {
newnode->next = q->data.inssort.first;
q->data.inssort.first = newnode;
} else {
InsSortNode *node = q->data.inssort.first;
while (node != NULL) {
if (node->next == NULL || node->next->priority >= priority) {
newnode->next = node->next;
node->next = newnode;
break;
}
node = node->next;
}
}
return true;
}
static void *InsSort_Pop(Queue *q)
{
InsSortNode *node = q->data.inssort.first;
void *result;
if (node == NULL) return NULL;
result = node->item;
q->data.inssort.first = q->data.inssort.first->next;
assert(q->data.inssort.first == NULL || q->data.inssort.first->priority >= node->priority);
free(node);
return result;
}
static bool InsSort_Delete(Queue *q, void *item, int priority)
{
return false;
}
void init_InsSort(Queue *q)
{
q->push = InsSort_Push;
q->pop = InsSort_Pop;
q->del = InsSort_Delete;
q->clear = InsSort_Clear;
q->free = InsSort_Free;
q->data.inssort.first = NULL;
}
/*
* Binary Heap
* For information, see: http://www.policyalmanac.org/games/binaryHeaps.htm
*/
#define BINARY_HEAP_BLOCKSIZE (1 << BINARY_HEAP_BLOCKSIZE_BITS)
#define BINARY_HEAP_BLOCKSIZE_MASK (BINARY_HEAP_BLOCKSIZE - 1)
/* To make our life easy, we make the next define
* Because Binary Heaps works with array from 1 to n,
* and C with array from 0 to n-1, and we don't like typing
* q->data.binaryheap.elements[i - 1] every time, we use this define. */
#define BIN_HEAP_ARR(i) q->data.binaryheap.elements[((i) - 1) >> BINARY_HEAP_BLOCKSIZE_BITS][((i) - 1) & BINARY_HEAP_BLOCKSIZE_MASK]
static void BinaryHeap_Clear(Queue *q, bool free_values)
{
/* Free all items if needed and free all but the first blocks of memory */
uint i;
uint j;
for (i = 0; i < q->data.binaryheap.blocks; i++) {
if (q->data.binaryheap.elements[i] == NULL) {
/* No more allocated blocks */
break;
}
/* For every allocated block */
if (free_values) {
for (j = 0; j < (1 << BINARY_HEAP_BLOCKSIZE_BITS); j++) {
/* For every element in the block */
if ((q->data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS) == i &&
(q->data.binaryheap.size & BINARY_HEAP_BLOCKSIZE_MASK) == j) {
break; // We're past the last element
}
free(q->data.binaryheap.elements[i][j].item);
}
}
if (i != 0) {
/* Leave the first block of memory alone */
free(q->data.binaryheap.elements[i]);
q->data.binaryheap.elements[i] = NULL;
}
}
q->data.binaryheap.size = 0;
q->data.binaryheap.blocks = 1;
}
static void BinaryHeap_Free(Queue *q, bool free_values)
{
uint i;
q->clear(q, free_values);
for (i = 0; i < q->data.binaryheap.blocks; i++) {
if (q->data.binaryheap.elements[i] == NULL) break;
free(q->data.binaryheap.elements[i]);
}
free(q->data.binaryheap.elements);
}
static bool BinaryHeap_Push(Queue *q, void *item, int priority)
{
#ifdef QUEUE_DEBUG
printf("[BinaryHeap] Pushing an element. There are %d elements left\n", q->data.binaryheap.size);
#endif
if (q->data.binaryheap.size == q->data.binaryheap.max_size) return false;
assert(q->data.binaryheap.size < q->data.binaryheap.max_size);
if (q->data.binaryheap.elements[q->data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS] == NULL) {
/* The currently allocated blocks are full, allocate a new one */
assert((q->data.binaryheap.size & BINARY_HEAP_BLOCKSIZE_MASK) == 0);
q->data.binaryheap.elements[q->data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS] = MallocT<BinaryHeapNode>(BINARY_HEAP_BLOCKSIZE);
q->data.binaryheap.blocks++;
#ifdef QUEUE_DEBUG
printf("[BinaryHeap] Increasing size of elements to %d nodes\n", q->data.binaryheap.blocks * BINARY_HEAP_BLOCKSIZE);
#endif
}
/* Add the item at the end of the array */
BIN_HEAP_ARR(q->data.binaryheap.size + 1).priority = priority;
BIN_HEAP_ARR(q->data.binaryheap.size + 1).item = item;
q->data.binaryheap.size++;
/* Now we are going to check where it belongs. As long as the parent is
* bigger, we switch with the parent */
{
BinaryHeapNode temp;
int i;
int j;
i = q->data.binaryheap.size;
while (i > 1) {
/* Get the parent of this object (divide by 2) */
j = i / 2;
/* Is the parent bigger then the current, switch them */
if (BIN_HEAP_ARR(i).priority <= BIN_HEAP_ARR(j).priority) {
temp = BIN_HEAP_ARR(j);
BIN_HEAP_ARR(j) = BIN_HEAP_ARR(i);
BIN_HEAP_ARR(i) = temp;
i = j;
} else {
/* It is not, we're done! */
break;
}
}
}
return true;
}
static bool BinaryHeap_Delete(Queue *q, void *item, int priority)
{
uint i = 0;
#ifdef QUEUE_DEBUG
printf("[BinaryHeap] Deleting an element. There are %d elements left\n", q->data.binaryheap.size);
#endif
/* First, we try to find the item.. */
do {
if (BIN_HEAP_ARR(i + 1).item == item) break;
i++;
} while (i < q->data.binaryheap.size);
/* We did not find the item, so we return false */
if (i == q->data.binaryheap.size) return false;
/* Now we put the last item over the current item while decreasing the size of the elements */
q->data.binaryheap.size--;
BIN_HEAP_ARR(i + 1) = BIN_HEAP_ARR(q->data.binaryheap.size + 1);
/* Now the only thing we have to do, is resort it..
* On place i there is the item to be sorted.. let's start there */
{
uint j;
BinaryHeapNode temp;
/* Because of the fact that Binary Heap uses array from 1 to n, we need to
* increase i by 1
*/
i++;
for (;;) {
j = i;
/* Check if we have 2 childs */
if (2 * j + 1 <= q->data.binaryheap.size) {
/* Is this child smaller than the parent? */
if (BIN_HEAP_ARR(j).priority >= BIN_HEAP_ARR(2 * j).priority) i = 2 * j;
/* Yes, we _need_ to use i here, not j, because we want to have the smallest child
* This way we get that straight away! */
if (BIN_HEAP_ARR(i).priority >= BIN_HEAP_ARR(2 * j + 1).priority) i = 2 * j + 1;
/* Do we have one child? */
} else if (2 * j <= q->data.binaryheap.size) {
if (BIN_HEAP_ARR(j).priority >= BIN_HEAP_ARR(2 * j).priority) i = 2 * j;
}
/* One of our childs is smaller than we are, switch */
if (i != j) {
temp = BIN_HEAP_ARR(j);
BIN_HEAP_ARR(j) = BIN_HEAP_ARR(i);
BIN_HEAP_ARR(i) = temp;
} else {
/* None of our childs is smaller, so we stay here.. stop :) */
break;
}
}
}
return true;
}
static void *BinaryHeap_Pop(Queue *q)
{
void *result;
#ifdef QUEUE_DEBUG
printf("[BinaryHeap] Popping an element. There are %d elements left\n", q->data.binaryheap.size);
#endif
if (q->data.binaryheap.size == 0) return NULL;
/* The best item is always on top, so give that as result */
result = BIN_HEAP_ARR(1).item;
/* And now we should get rid of this item... */
BinaryHeap_Delete(q, BIN_HEAP_ARR(1).item, BIN_HEAP_ARR(1).priority);
return result;
}
void init_BinaryHeap(Queue *q, uint max_size)
{
assert(q != NULL);
q->push = BinaryHeap_Push;
q->pop = BinaryHeap_Pop;
q->del = BinaryHeap_Delete;
q->clear = BinaryHeap_Clear;
q->free = BinaryHeap_Free;
q->data.binaryheap.max_size = max_size;
q->data.binaryheap.size = 0;
/* We malloc memory in block of BINARY_HEAP_BLOCKSIZE
* It autosizes when it runs out of memory */
q->data.binaryheap.elements = CallocT<BinaryHeapNode*>((max_size - 1) / BINARY_HEAP_BLOCKSIZE + 1);
q->data.binaryheap.elements[0] = MallocT<BinaryHeapNode>(BINARY_HEAP_BLOCKSIZE);
q->data.binaryheap.blocks = 1;
#ifdef QUEUE_DEBUG
printf("[BinaryHeap] Initial size of elements is %d nodes\n", BINARY_HEAP_BLOCKSIZE);
#endif
}
/* Because we don't want anyone else to bother with our defines */
#undef BIN_HEAP_ARR
/*
* Hash
*/
void init_Hash(Hash *h, Hash_HashProc *hash, uint num_buckets)
{
/* Allocate space for the Hash, the buckets and the bucket flags */
uint i;
assert(h != NULL);
#ifdef HASH_DEBUG
debug("Allocated hash: %p", h);
#endif
h->hash = hash;
h->size = 0;
h->num_buckets = num_buckets;
h->buckets = (HashNode*)MallocT<byte>(num_buckets * (sizeof(*h->buckets) + sizeof(*h->buckets_in_use)));
#ifdef HASH_DEBUG
debug("Buckets = %p", h->buckets);
#endif
h->buckets_in_use = (bool*)(h->buckets + num_buckets);
for (i = 0; i < num_buckets; i++) h->buckets_in_use[i] = false;
}
void delete_Hash(Hash *h, bool free_values)
{
uint i;
/* Iterate all buckets */
for (i = 0; i < h->num_buckets; i++) {
if (h->buckets_in_use[i]) {
HashNode *node;
/* Free the first value */
if (free_values) free(h->buckets[i].value);
node = h->buckets[i].next;
while (node != NULL) {
HashNode *prev = node;
node = node->next;
/* Free the value */
if (free_values) free(prev->value);
/* Free the node */
free(prev);
}
}
}
free(h->buckets);
/* No need to free buckets_in_use, it is always allocated in one
* malloc with buckets */
#ifdef HASH_DEBUG
debug("Freeing Hash: %p", h);
#endif
}
#ifdef HASH_STATS
static void stat_Hash(const Hash *h)
{
uint used_buckets = 0;
uint max_collision = 0;
uint max_usage = 0;
uint usage[200];
uint i;
for (i = 0; i < lengthof(usage); i++) usage[i] = 0;
for (i = 0; i < h->num_buckets; i++) {
uint collision = 0;
if (h->buckets_in_use[i]) {
const HashNode *node;
used_buckets++;
for (node = &h->buckets[i]; node != NULL; node = node->next) collision++;
if (collision > max_collision) max_collision = collision;
}
if (collision >= lengthof(usage)) collision = lengthof(usage) - 1;
usage[collision]++;
if (collision > 0 && usage[collision] >= max_usage) {
max_usage = usage[collision];
}
}
printf(
"---\n"
"Hash size: %d\n"
"Nodes used: %d\n"
"Non empty buckets: %d\n"
"Max collision: %d\n",
h->num_buckets, h->size, used_buckets, max_collision
);
printf("{ ");
for (i = 0; i <= max_collision; i++) {
if (usage[i] > 0) {
printf("%d:%d ", i, usage[i]);
#if 0
if (i > 0) {
uint j;
for (j = 0; j < usage[i] * 160 / 800; j++) putchar('#');
}
printf("\n");
#endif
}
}
printf ("}\n");
}
#endif
void clear_Hash(Hash *h, bool free_values)
{
uint i;
#ifdef HASH_STATS
if (h->size > 2000) stat_Hash(h);
#endif
/* Iterate all buckets */
for (i = 0; i < h->num_buckets; i++) {
if (h->buckets_in_use[i]) {
HashNode *node;
h->buckets_in_use[i] = false;
/* Free the first value */
if (free_values) free(h->buckets[i].value);
node = h->buckets[i].next;
while (node != NULL) {
HashNode *prev = node;
node = node->next;
if (free_values) free(prev->value);
free(prev);
}
}
}
h->size = 0;
}
/** Finds the node that that saves this key pair. If it is not
* found, returns NULL. If it is found, *prev is set to the
* node before the one found, or if the node found was the first in the bucket
* to NULL. If it is not found, *prev is set to the last HashNode in the
* bucket, or NULL if it is empty. prev can also be NULL, in which case it is
* not used for output.
*/
static HashNode *Hash_FindNode(const Hash *h, uint key1, uint key2, HashNode** prev_out)
{
uint hash = h->hash(key1, key2);
HashNode *result = NULL;
#ifdef HASH_DEBUG
debug("Looking for %u, %u", key1, key2);
#endif
/* Check if the bucket is empty */
if (!h->buckets_in_use[hash]) {
if (prev_out != NULL) *prev_out = NULL;
result = NULL;
/* Check the first node specially */
} else if (h->buckets[hash].key1 == key1 && h->buckets[hash].key2 == key2) {
/* Save the value */
result = h->buckets + hash;
if (prev_out != NULL) *prev_out = NULL;
#ifdef HASH_DEBUG
debug("Found in first node: %p", result);
#endif
/* Check all other nodes */
} else {
HashNode *prev = h->buckets + hash;
HashNode *node;
for (node = prev->next; node != NULL; node = node->next) {
if (node->key1 == key1 && node->key2 == key2) {
/* Found it */
result = node;
#ifdef HASH_DEBUG
debug("Found in other node: %p", result);
#endif
break;
}
prev = node;
}
if (prev_out != NULL) *prev_out = prev;
}
#ifdef HASH_DEBUG
if (result == NULL) debug("Not found");
#endif
return result;
}
void *Hash_Delete(Hash *h, uint key1, uint key2)
{
void *result;
HashNode *prev; // Used as output var for below function call
HashNode *node = Hash_FindNode(h, key1, key2, &prev);
if (node == NULL) {
/* not found */
result = NULL;
} else if (prev == NULL) {
/* It is in the first node, we can't free that one, so we free
* the next one instead (if there is any)*/
/* Save the value */
result = node->value;
if (node->next != NULL) {
HashNode *next = node->next;
/* Copy the second to the first */
*node = *next;
/* Free the second */
#ifndef NOFREE
free(next);
#endif
} else {
/* This was the last in this bucket
* Mark it as empty */
uint hash = h->hash(key1, key2);
h->buckets_in_use[hash] = false;
}
} else {
/* It is in another node
* Save the value */
result = node->value;
/* Link previous and next nodes */
prev->next = node->next;
/* Free the node */
#ifndef NOFREE
free(node);
#endif
}
if (result != NULL) h->size--;
return result;
}
void *Hash_Set(Hash *h, uint key1, uint key2, void *value)
{
HashNode *prev;
HashNode *node = Hash_FindNode(h, key1, key2, &prev);
if (node != NULL) {
/* Found it */
void *result = node->value;
node->value = value;
return result;
}
/* It is not yet present, let's add it */
if (prev == NULL) {
/* The bucket is still empty */
uint hash = h->hash(key1, key2);
h->buckets_in_use[hash] = true;
node = h->buckets + hash;
} else {
/* Add it after prev */
node = MallocT<HashNode>(1);
prev->next = node;
}
node->next = NULL;
node->key1 = key1;
node->key2 = key2;
node->value = value;
h->size++;
return NULL;
}
void *Hash_Get(const Hash *h, uint key1, uint key2)
{
HashNode *node = Hash_FindNode(h, key1, key2, NULL);
#ifdef HASH_DEBUG
debug("Found node: %p", node);
#endif
return (node != NULL) ? node->value : NULL;
}
uint Hash_Size(const Hash *h)
{
return h->size;
}

167
src/pathfinder/npf/queue.h Normal file
View File

@@ -0,0 +1,167 @@
/* $Id$ */
/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file queue.h Simple Queue/Hash implementations. */
#ifndef QUEUE_H
#define QUEUE_H
//#define NOFREE
//#define QUEUE_DEBUG
//#define HASH_DEBUG
//#define HASH_STATS
struct Queue;
typedef bool Queue_PushProc(Queue *q, void *item, int priority);
typedef void *Queue_PopProc(Queue *q);
typedef bool Queue_DeleteProc(Queue *q, void *item, int priority);
typedef void Queue_ClearProc(Queue *q, bool free_values);
typedef void Queue_FreeProc(Queue *q, bool free_values);
struct InsSortNode {
void *item;
int priority;
InsSortNode *next;
};
struct BinaryHeapNode {
void *item;
int priority;
};
struct Queue{
/*
* Pushes an element into the queue, at the appropriate place for the queue.
* Requires the queue pointer to be of an appropriate type, of course.
*/
Queue_PushProc *push;
/*
* Pops the first element from the queue. What exactly is the first element,
* is defined by the exact type of queue.
*/
Queue_PopProc *pop;
/*
* Deletes the item from the queue. priority should be specified if
* known, which speeds up the deleting for some queue's. Should be -1
* if not known.
*/
Queue_DeleteProc *del;
/* Clears the queue, by removing all values from it. It's state is
* effectively reset. If free_items is true, each of the items cleared
* in this way are free()'d.
*/
Queue_ClearProc *clear;
/* Frees the queue, by reclaiming all memory allocated by it. After
* this it is no longer usable. If free_items is true, any remaining
* items are free()'d too.
*/
Queue_FreeProc *free;
union {
struct {
InsSortNode *first;
} inssort;
struct {
uint max_size;
uint size;
uint blocks; ///< The amount of blocks for which space is reserved in elements
BinaryHeapNode **elements;
} binaryheap;
} data;
};
/**
* Insertion Sorter
*/
/* Initializes a inssort and allocates internal memory. There is no maximum
* size */
void init_InsSort(Queue *q);
/*
* Binary Heap
* For information, see:
* http://www.policyalmanac.org/games/binaryHeaps.htm
*/
/* The amount of elements that will be malloc'd at a time */
#define BINARY_HEAP_BLOCKSIZE_BITS 10
/** Initializes a binary heap and allocates internal memory for maximum of
* max_size elements */
void init_BinaryHeap(Queue *q, uint max_size);
/*
* Hash
*/
struct HashNode {
uint key1;
uint key2;
void *value;
HashNode *next;
};
/**
* Generates a hash code from the given key pair. You should make sure that
* the resulting range is clearly defined.
*/
typedef uint Hash_HashProc(uint key1, uint key2);
struct Hash {
/* The hash function used */
Hash_HashProc *hash;
/* The amount of items in the hash */
uint size;
/* The number of buckets allocated */
uint num_buckets;
/* A pointer to an array of num_buckets buckets. */
HashNode *buckets;
/* A pointer to an array of numbuckets booleans, which will be true if
* there are any Nodes in the bucket */
bool *buckets_in_use;
};
/* Call these function to manipulate a hash */
/** Deletes the value with the specified key pair from the hash and returns
* that value. Returns NULL when the value was not present. The value returned
* is _not_ free()'d! */
void *Hash_Delete(Hash *h, uint key1, uint key2);
/** Sets the value associated with the given key pair to the given value.
* Returns the old value if the value was replaced, NULL when it was not yet present. */
void *Hash_Set(Hash *h, uint key1, uint key2, void *value);
/** Gets the value associated with the given key pair, or NULL when it is not
* present. */
void *Hash_Get(const Hash *h, uint key1, uint key2);
/* Call these function to create/destroy a hash */
/** Builds a new hash in an existing struct. Make sure that hash() always
* returns a hash less than num_buckets! Call delete_hash after use */
void init_Hash(Hash *h, Hash_HashProc *hash, uint num_buckets);
/**
* Deletes the hash and cleans up. Only cleans up memory allocated by new_Hash
* & friends. If free is true, it will call free() on all the values that
* are left in the hash.
*/
void delete_Hash(Hash *h, bool free_values);
/**
* Cleans the hash, but keeps the memory allocated
*/
void clear_Hash(Hash *h, bool free_values);
/**
* Gets the current size of the Hash
*/
uint Hash_Size(const Hash *h);
#endif /* QUEUE_H */

View File

@@ -0,0 +1,107 @@
/* $Id$ */
/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file pathfind.cpp Implementation of the oldest supported pathfinder. */
#include "../../stdafx.h"
#include "../../debug.h"
#include "../../tunnelbridge_map.h"
#include "../../core/alloc_type.hpp"
#include "../../tunnelbridge.h"
#include "opf_ship.h"
struct RememberData {
uint16 cur_length;
byte depth;
Track last_choosen_track;
};
struct TrackPathFinder {
TPFEnumProc *enum_proc;
void *userdata;
RememberData rd;
TrackdirByte the_dir;
};
static void TPFModeShip(TrackPathFinder *tpf, TileIndex tile, DiagDirection direction)
{
if (IsTileType(tile, MP_TUNNELBRIDGE)) {
/* wrong track type */
if (GetTunnelBridgeTransportType(tile) != TRANSPORT_WATER) return;
DiagDirection dir = GetTunnelBridgeDirection(tile);
/* entering tunnel / bridge? */
if (dir == direction) {
TileIndex endtile = GetOtherTunnelBridgeEnd(tile);
tpf->rd.cur_length += GetTunnelBridgeLength(tile, endtile) + 1;
tile = endtile;
} else {
/* leaving tunnel / bridge? */
if (ReverseDiagDir(dir) != direction) return;
}
}
/* This addition will sometimes overflow by a single tile.
* The use of TILE_MASK here makes sure that we still point at a valid
* tile, and then this tile will be in the sentinel row/col, so GetTileTrackStatus will fail. */
tile = TILE_MASK(tile + TileOffsByDiagDir(direction));
if (++tpf->rd.cur_length > 50)
return;
TrackBits bits = TrackStatusToTrackBits(GetTileTrackStatus(tile, TRANSPORT_WATER, 0)) & DiagdirReachesTracks(direction);
if (bits == TRACK_BIT_NONE) return;
assert(TileX(tile) != MapMaxX() && TileY(tile) != MapMaxY());
bool only_one_track = true;
do {
Track track = RemoveFirstTrack(&bits);
if (bits != TRACK_BIT_NONE) only_one_track = false;
RememberData rd = tpf->rd;
/* Change direction 4 times only */
if (!only_one_track && track != tpf->rd.last_choosen_track) {
if (++tpf->rd.depth > 4) {
tpf->rd = rd;
return;
}
tpf->rd.last_choosen_track = track;
}
tpf->the_dir = TrackEnterdirToTrackdir(track, direction);
if (!tpf->enum_proc(tile, tpf->userdata, tpf->the_dir, tpf->rd.cur_length)) {
TPFModeShip(tpf, tile, TrackdirToExitdir(tpf->the_dir));
}
tpf->rd = rd;
} while (bits != TRACK_BIT_NONE);
}
void OPFShipFollowTrack(TileIndex tile, DiagDirection direction, TPFEnumProc *enum_proc, void *data)
{
assert(IsValidDiagDirection(direction));
SmallStackSafeStackAlloc<TrackPathFinder, 1> tpf;
/* initialize path finder variables */
tpf->userdata = data;
tpf->enum_proc = enum_proc;
tpf->rd.cur_length = 0;
tpf->rd.depth = 0;
tpf->rd.last_choosen_track = INVALID_TRACK;
tpf->enum_proc(tile, data, INVALID_TRACKDIR, 0);
TPFModeShip(tpf, tile, direction);
}

View File

@@ -0,0 +1,21 @@
/* $Id$ */
/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file opf_ship.h Original pathfinder for ships; very simple. */
#ifndef OPF_SHIP_H
#define OPF_SHIP_H
#include "../../direction_type.h"
typedef bool TPFEnumProc(TileIndex tile, void *data, Trackdir trackdir, uint length);
void OPFShipFollowTrack(TileIndex tile, DiagDirection direction, TPFEnumProc *enum_proc, void *data);
#endif /* OPF_SHIP_H */

View File

@@ -0,0 +1,49 @@
/* $Id$ */
/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file pathfinder_func.h General functions related to pathfinders. */
#ifndef PATHFINDER_FUNC_H
#define PATHFINDER_FUNC_H
#include "../station_base.h"
#include "../waypoint_base.h"
/**
* Calculates the tile of given station that is closest to a given tile
* for this we assume the station is a rectangle,
* as defined by its tile are (st->train_station)
* @param station The station to calculate the distance to
* @param tile The tile from where to calculate the distance
* @return The closest station tile to the given tile.
*/
static inline TileIndex CalcClosestStationTile(StationID station, TileIndex tile)
{
const BaseStation *st = BaseStation::Get(station);
/* If the rail station is (temporarily) not present, use the station sign to drive near the station */
if (st->train_station.tile == INVALID_TILE) return st->xy;
uint minx = TileX(st->train_station.tile); // topmost corner of station
uint miny = TileY(st->train_station.tile);
uint maxx = minx + st->train_station.w - 1; // lowermost corner of station
uint maxy = miny + st->train_station.h - 1;
/* we are going the aim for the x coordinate of the closest corner
* but if we are between those coordinates, we will aim for our own x coordinate */
uint x = ClampU(TileX(tile), minx, maxx);
/* same for y coordinate, see above comment */
uint y = ClampU(TileY(tile), miny, maxy);
/* return the tile of our target coordinates */
return TileXY(x, y);
}
#endif /* PATHFINDER_FUNC_H */

View File

@@ -0,0 +1,451 @@
/* $Id$ */
/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file follow_track.hpp Template function for track followers */
#ifndef FOLLOW_TRACK_HPP
#define FOLLOW_TRACK_HPP
#include "yapf.hpp"
#include "../../depot_map.h"
#include "../../roadveh.h"
#include "../../train.h"
/** Track follower helper template class (can serve pathfinders and vehicle
* controllers). See 6 different typedefs below for 3 different transport
* types w/ or w/o 90-deg turns allowed */
template <TransportType Ttr_type_, bool T90deg_turns_allowed_ = true, bool Tmask_reserved_tracks = false>
struct CFollowTrackT
{
enum ErrorCode {
EC_NONE,
EC_OWNER,
EC_RAIL_TYPE,
EC_90DEG,
EC_NO_WAY,
EC_RESERVED,
};
const Vehicle *m_veh; ///< moving vehicle
Owner m_veh_owner; ///< owner of the vehicle
TileIndex m_old_tile; ///< the origin (vehicle moved from) before move
Trackdir m_old_td; ///< the trackdir (the vehicle was on) before move
TileIndex m_new_tile; ///< the new tile (the vehicle has entered)
TrackdirBits m_new_td_bits; ///< the new set of available trackdirs
DiagDirection m_exitdir; ///< exit direction (leaving the old tile)
bool m_is_tunnel; ///< last turn passed tunnel
bool m_is_bridge; ///< last turn passed bridge ramp
bool m_is_station; ///< last turn passed station
int m_tiles_skipped; ///< number of skipped tunnel or station tiles
ErrorCode m_err;
CPerformanceTimer *m_pPerf;
RailTypes m_railtypes;
FORCEINLINE CFollowTrackT(const Vehicle *v = NULL, RailTypes railtype_override = INVALID_RAILTYPES, CPerformanceTimer *pPerf = NULL)
{
Init(v, railtype_override, pPerf);
}
FORCEINLINE CFollowTrackT(Owner o, RailTypes railtype_override = INVALID_RAILTYPES, CPerformanceTimer *pPerf = NULL)
{
m_veh = NULL;
Init(o, railtype_override, pPerf);
}
FORCEINLINE void Init(const Vehicle *v, RailTypes railtype_override, CPerformanceTimer *pPerf)
{
assert(!IsRailTT() || (v != NULL && v->type == VEH_TRAIN));
m_veh = v;
Init(v != NULL ? v->owner : INVALID_OWNER, IsRailTT() && railtype_override == INVALID_RAILTYPES ? Train::From(v)->compatible_railtypes : railtype_override, pPerf);
}
FORCEINLINE void Init(Owner o, RailTypes railtype_override, CPerformanceTimer *pPerf)
{
assert((!IsRoadTT() || m_veh != NULL) && (!IsRailTT() || railtype_override != INVALID_RAILTYPES));
m_veh_owner = o;
m_pPerf = pPerf;
/* don't worry, all is inlined so compiler should remove unnecessary initializations */
m_new_tile = INVALID_TILE;
m_new_td_bits = TRACKDIR_BIT_NONE;
m_exitdir = INVALID_DIAGDIR;
m_is_station = m_is_bridge = m_is_tunnel = false;
m_tiles_skipped = 0;
m_err = EC_NONE;
m_railtypes = railtype_override;
}
FORCEINLINE static TransportType TT() {return Ttr_type_;}
FORCEINLINE static bool IsWaterTT() {return TT() == TRANSPORT_WATER;}
FORCEINLINE static bool IsRailTT() {return TT() == TRANSPORT_RAIL;}
FORCEINLINE bool IsTram() {return IsRoadTT() && HasBit(RoadVehicle::From(m_veh)->compatible_roadtypes, ROADTYPE_TRAM);}
FORCEINLINE static bool IsRoadTT() {return TT() == TRANSPORT_ROAD;}
FORCEINLINE static bool Allow90degTurns() {return T90deg_turns_allowed_;}
FORCEINLINE static bool DoTrackMasking() {return IsRailTT() && Tmask_reserved_tracks;}
/** Tests if a tile is a road tile with a single tramtrack (tram can reverse) */
FORCEINLINE DiagDirection GetSingleTramBit(TileIndex tile)
{
assert(IsTram()); // this function shouldn't be called in other cases
if (IsNormalRoadTile(tile)) {
RoadBits rb = GetRoadBits(tile, ROADTYPE_TRAM);
switch (rb) {
case ROAD_NW: return DIAGDIR_NW;
case ROAD_SW: return DIAGDIR_SW;
case ROAD_SE: return DIAGDIR_SE;
case ROAD_NE: return DIAGDIR_NE;
default: break;
}
}
return INVALID_DIAGDIR;
}
/** main follower routine. Fills all members and return true on success.
* Otherwise returns false if track can't be followed. */
inline bool Follow(TileIndex old_tile, Trackdir old_td)
{
m_old_tile = old_tile;
m_old_td = old_td;
m_err = EC_NONE;
assert(((TrackStatusToTrackdirBits(GetTileTrackStatus(m_old_tile, TT(), IsRoadTT() && m_veh != NULL ? RoadVehicle::From(m_veh)->compatible_roadtypes : 0)) & TrackdirToTrackdirBits(m_old_td)) != 0) ||
(IsTram() && GetSingleTramBit(m_old_tile) != INVALID_DIAGDIR)); // Disable the assertion for single tram bits
m_exitdir = TrackdirToExitdir(m_old_td);
if (ForcedReverse()) return true;
if (!CanExitOldTile()) return false;
FollowTileExit();
if (!QueryNewTileTrackStatus()) return TryReverse();
if (!CanEnterNewTile()) return false;
m_new_td_bits &= DiagdirReachesTrackdirs(m_exitdir);
if (m_new_td_bits == TRACKDIR_BIT_NONE) {
m_err = EC_NO_WAY;
return false;
}
if (!Allow90degTurns()) {
m_new_td_bits &= (TrackdirBits)~(int)TrackdirCrossesTrackdirs(m_old_td);
if (m_new_td_bits == TRACKDIR_BIT_NONE) {
m_err = EC_90DEG;
return false;
}
}
return true;
}
inline bool MaskReservedTracks()
{
if (!DoTrackMasking()) return true;
if (m_is_station) {
/* Check skipped station tiles as well. */
TileIndexDiff diff = TileOffsByDiagDir(m_exitdir);
for (TileIndex tile = m_new_tile - diff * m_tiles_skipped; tile != m_new_tile; tile += diff) {
if (HasStationReservation(tile)) {
m_new_td_bits = TRACKDIR_BIT_NONE;
m_err = EC_RESERVED;
return false;
}
}
}
TrackBits reserved = GetReservedTrackbits(m_new_tile);
/* Mask already reserved trackdirs. */
m_new_td_bits &= ~TrackBitsToTrackdirBits(reserved);
/* Mask out all trackdirs that conflict with the reservation. */
uint bits = (uint)TrackdirBitsToTrackBits(m_new_td_bits);
int i;
FOR_EACH_SET_BIT(i, bits) {
if (TracksOverlap(reserved | TrackToTrackBits((Track)i))) m_new_td_bits &= ~TrackToTrackdirBits((Track)i);
}
if (m_new_td_bits == TRACKDIR_BIT_NONE) {
m_err = EC_RESERVED;
return false;
}
return true;
}
protected:
/** Follow the m_exitdir from m_old_tile and fill m_new_tile and m_tiles_skipped */
FORCEINLINE void FollowTileExit()
{
m_is_station = m_is_bridge = m_is_tunnel = false;
m_tiles_skipped = 0;
/* extra handling for tunnels and bridges in our direction */
if (IsTileType(m_old_tile, MP_TUNNELBRIDGE)) {
DiagDirection enterdir = GetTunnelBridgeDirection(m_old_tile);
if (enterdir == m_exitdir) {
/* we are entering the tunnel / bridge */
if (IsTunnel(m_old_tile)) {
m_is_tunnel = true;
m_new_tile = GetOtherTunnelEnd(m_old_tile);
} else { // IsBridge(m_old_tile)
m_is_bridge = true;
m_new_tile = GetOtherBridgeEnd(m_old_tile);
}
m_tiles_skipped = GetTunnelBridgeLength(m_new_tile, m_old_tile);
return;
}
assert(ReverseDiagDir(enterdir) == m_exitdir);
}
/* normal or station tile, do one step */
TileIndexDiff diff = TileOffsByDiagDir(m_exitdir);
m_new_tile = TILE_ADD(m_old_tile, diff);
/* special handling for stations */
if (IsRailTT() && HasStationTileRail(m_new_tile)) {
m_is_station = true;
} else if (IsRoadTT() && IsRoadStopTile(m_new_tile)) {
m_is_station = true;
} else {
m_is_station = false;
}
}
/** stores track status (available trackdirs) for the new tile into m_new_td_bits */
FORCEINLINE bool QueryNewTileTrackStatus()
{
CPerfStart perf(*m_pPerf);
if (IsRailTT() && IsPlainRailTile(m_new_tile)) {
m_new_td_bits = (TrackdirBits)(GetTrackBits(m_new_tile) * 0x101);
} else {
m_new_td_bits = TrackStatusToTrackdirBits(GetTileTrackStatus(m_new_tile, TT(), IsRoadTT() && m_veh != NULL ? RoadVehicle::From(m_veh)->compatible_roadtypes : 0));
if (IsTram() && m_new_td_bits == 0) {
/* GetTileTrackStatus() returns 0 for single tram bits.
* As we cannot change it there (easily) without breaking something, change it here */
switch (GetSingleTramBit(m_new_tile)) {
case DIAGDIR_NE:
case DIAGDIR_SW:
m_new_td_bits = TRACKDIR_BIT_X_NE | TRACKDIR_BIT_X_SW;
break;
case DIAGDIR_NW:
case DIAGDIR_SE:
m_new_td_bits = TRACKDIR_BIT_Y_NW | TRACKDIR_BIT_Y_SE;
break;
default: break;
}
}
}
return (m_new_td_bits != TRACKDIR_BIT_NONE);
}
/** return true if we can leave m_old_tile in m_exitdir */
FORCEINLINE bool CanExitOldTile()
{
/* road stop can be left at one direction only unless it's a drive-through stop */
if (IsRoadTT() && IsStandardRoadStopTile(m_old_tile)) {
DiagDirection exitdir = GetRoadStopDir(m_old_tile);
if (exitdir != m_exitdir) {
m_err = EC_NO_WAY;
return false;
}
}
/* single tram bits can only be left in one direction */
if (IsTram()) {
DiagDirection single_tram = GetSingleTramBit(m_old_tile);
if (single_tram != INVALID_DIAGDIR && single_tram != m_exitdir) {
m_err = EC_NO_WAY;
return false;
}
}
/* road depots can be also left in one direction only */
if (IsRoadTT() && IsDepotTypeTile(m_old_tile, TT())) {
DiagDirection exitdir = GetRoadDepotDirection(m_old_tile);
if (exitdir != m_exitdir) {
m_err = EC_NO_WAY;
return false;
}
}
return true;
}
/** return true if we can enter m_new_tile from m_exitdir */
FORCEINLINE bool CanEnterNewTile()
{
if (IsRoadTT() && IsStandardRoadStopTile(m_new_tile)) {
/* road stop can be entered from one direction only unless it's a drive-through stop */
DiagDirection exitdir = GetRoadStopDir(m_new_tile);
if (ReverseDiagDir(exitdir) != m_exitdir) {
m_err = EC_NO_WAY;
return false;
}
}
/* single tram bits can only be entered from one direction */
if (IsTram()) {
DiagDirection single_tram = GetSingleTramBit(m_new_tile);
if (single_tram != INVALID_DIAGDIR && single_tram != ReverseDiagDir(m_exitdir)) {
m_err = EC_NO_WAY;
return false;
}
}
/* road and rail depots can also be entered from one direction only */
if (IsRoadTT() && IsDepotTypeTile(m_new_tile, TT())) {
DiagDirection exitdir = GetRoadDepotDirection(m_new_tile);
if (ReverseDiagDir(exitdir) != m_exitdir) {
m_err = EC_NO_WAY;
return false;
}
/* don't try to enter other company's depots */
if (GetTileOwner(m_new_tile) != m_veh_owner) {
m_err = EC_OWNER;
return false;
}
}
if (IsRailTT() && IsDepotTypeTile(m_new_tile, TT())) {
DiagDirection exitdir = GetRailDepotDirection(m_new_tile);
if (ReverseDiagDir(exitdir) != m_exitdir) {
m_err = EC_NO_WAY;
return false;
}
}
/* rail transport is possible only on tiles with the same owner as vehicle */
if (IsRailTT() && GetTileOwner(m_new_tile) != m_veh_owner) {
/* different owner */
m_err = EC_NO_WAY;
return false;
}
/* rail transport is possible only on compatible rail types */
if (IsRailTT()) {
RailType rail_type = GetTileRailType(m_new_tile);
if (!HasBit(m_railtypes, rail_type)) {
/* incompatible rail type */
m_err = EC_RAIL_TYPE;
return false;
}
}
/* tunnel holes and bridge ramps can be entered only from proper direction */
if (IsTileType(m_new_tile, MP_TUNNELBRIDGE)) {
if (IsTunnel(m_new_tile)) {
if (!m_is_tunnel) {
DiagDirection tunnel_enterdir = GetTunnelBridgeDirection(m_new_tile);
if (tunnel_enterdir != m_exitdir) {
m_err = EC_NO_WAY;
return false;
}
}
} else { // IsBridge(m_new_tile)
if (!m_is_bridge) {
DiagDirection ramp_enderdir = GetTunnelBridgeDirection(m_new_tile);
if (ramp_enderdir != m_exitdir) {
m_err = EC_NO_WAY;
return false;
}
}
}
}
/* special handling for rail stations - get to the end of platform */
if (IsRailTT() && m_is_station) {
/* entered railway station
* get platform length */
uint length = BaseStation::GetByTile(m_new_tile)->GetPlatformLength(m_new_tile, TrackdirToExitdir(m_old_td));
/* how big step we must do to get to the last platform tile; */
m_tiles_skipped = length - 1;
/* move to the platform end */
TileIndexDiff diff = TileOffsByDiagDir(m_exitdir);
diff *= m_tiles_skipped;
m_new_tile = TILE_ADD(m_new_tile, diff);
return true;
}
return true;
}
/** return true if we must reverse (in depots and single tram bits) */
FORCEINLINE bool ForcedReverse()
{
/* rail and road depots cause reversing */
if (!IsWaterTT() && IsDepotTypeTile(m_old_tile, TT())) {
DiagDirection exitdir = IsRailTT() ? GetRailDepotDirection(m_old_tile) : GetRoadDepotDirection(m_old_tile);
if (exitdir != m_exitdir) {
/* reverse */
m_new_tile = m_old_tile;
m_new_td_bits = TrackdirToTrackdirBits(ReverseTrackdir(m_old_td));
m_exitdir = exitdir;
m_tiles_skipped = 0;
m_is_tunnel = m_is_bridge = m_is_station = false;
return true;
}
}
/* single tram bits cause reversing */
if (IsTram() && GetSingleTramBit(m_old_tile) == ReverseDiagDir(m_exitdir)) {
/* reverse */
m_new_tile = m_old_tile;
m_new_td_bits = TrackdirToTrackdirBits(ReverseTrackdir(m_old_td));
m_exitdir = ReverseDiagDir(m_exitdir);
m_tiles_skipped = 0;
m_is_tunnel = m_is_bridge = m_is_station = false;
return true;
}
return false;
}
/** return true if we successfully reversed at end of road/track */
FORCEINLINE bool TryReverse()
{
if (IsRoadTT() && !IsTram()) {
/* if we reached the end of road, we can reverse the RV and continue moving */
m_exitdir = ReverseDiagDir(m_exitdir);
/* new tile will be the same as old one */
m_new_tile = m_old_tile;
/* set new trackdir bits to all reachable trackdirs */
QueryNewTileTrackStatus();
m_new_td_bits &= DiagdirReachesTrackdirs(m_exitdir);
if (m_new_td_bits != TRACKDIR_BIT_NONE) {
/* we have some trackdirs reachable after reversal */
return true;
}
}
m_err = EC_NO_WAY;
return false;
}
public:
/** Helper for pathfinders - get min/max speed on the m_old_tile/m_old_td */
int GetSpeedLimit(int *pmin_speed = NULL) const
{
int min_speed = 0;
int max_speed = INT_MAX; // no limit
/* for now we handle only on-bridge speed limit */
if (!IsWaterTT() && IsBridgeTile(m_old_tile)) {
int spd = GetBridgeSpec(GetBridgeType(m_old_tile))->speed;
if (IsRoadTT()) spd *= 2;
if (max_speed > spd) max_speed = spd;
}
/* if min speed was requested, return it */
if (pmin_speed) *pmin_speed = min_speed;
return max_speed;
}
};
typedef CFollowTrackT<TRANSPORT_WATER, true > CFollowTrackWater;
typedef CFollowTrackT<TRANSPORT_ROAD , true > CFollowTrackRoad;
typedef CFollowTrackT<TRANSPORT_RAIL , true > CFollowTrackRail;
typedef CFollowTrackT<TRANSPORT_WATER, false> CFollowTrackWaterNo90;
typedef CFollowTrackT<TRANSPORT_ROAD , false> CFollowTrackRoadNo90;
typedef CFollowTrackT<TRANSPORT_RAIL , false> CFollowTrackRailNo90;
typedef CFollowTrackT<TRANSPORT_RAIL , true , true> CFollowTrackFreeRail;
typedef CFollowTrackT<TRANSPORT_RAIL , false, true> CFollowTrackFreeRailNo90;
#endif /* FOLLOW_TRACK_HPP */

View File

@@ -0,0 +1,164 @@
/* $Id$ */
/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file nodelist.hpp List of nodes used for the A-star pathfinder. */
#ifndef NODELIST_HPP
#define NODELIST_HPP
#include "../../misc/array.hpp"
#include "../../misc/hashtable.hpp"
#include "../../misc/binaryheap.hpp"
/** Hash table based node list multi-container class.
* Implements open list, closed list and priority queue for A-star
* path finder. */
template <class Titem_, int Thash_bits_open_, int Thash_bits_closed_>
class CNodeList_HashTableT {
public:
/** make Titem_ visible from outside of class */
typedef Titem_ Titem;
/** make Titem_::Key a property of HashTable */
typedef typename Titem_::Key Key;
/** type that we will use as item container */
typedef CArrayT<Titem_, 65536, 256> CItemArray;
/** how pointers to open nodes will be stored */
typedef CHashTableT<Titem_, Thash_bits_open_ > COpenList;
/** how pointers to closed nodes will be stored */
typedef CHashTableT<Titem_, Thash_bits_closed_> CClosedList;
/** how the priority queue will be managed */
typedef CBinaryHeapT<Titem_> CPriorityQueue;
protected:
/** here we store full item data (Titem_) */
CItemArray m_arr;
/** hash table of pointers to open item data */
COpenList m_open;
/** hash table of pointers to closed item data */
CClosedList m_closed;
/** priority queue of pointers to open item data */
CPriorityQueue m_open_queue;
/** new open node under construction */
Titem *m_new_node;
public:
/** default constructor */
CNodeList_HashTableT()
: m_open_queue(204800)
{
m_new_node = NULL;
}
/** destructor */
~CNodeList_HashTableT()
{
}
/** return number of open nodes */
FORCEINLINE int OpenCount()
{
return m_open.Count();
}
/** return number of closed nodes */
FORCEINLINE int ClosedCount()
{
return m_closed.Count();
}
/** allocate new data item from m_arr */
FORCEINLINE Titem_ *CreateNewNode()
{
if (m_new_node == NULL) m_new_node = &m_arr.Add();
return m_new_node;
}
/** notify the nodelist, that we don't want to discard the given node */
FORCEINLINE void FoundBestNode(Titem_& item)
{
/* for now it is enough to invalidate m_new_node if it is our given node */
if (&item == m_new_node) {
m_new_node = NULL;
}
/* TODO: do we need to store best nodes found in some extra list/array? Probably not now. */
}
/** insert given item as open node (into m_open and m_open_queue) */
FORCEINLINE void InsertOpenNode(Titem_& item)
{
assert(m_closed.Find(item.GetKey()) == NULL);
m_open.Push(item);
/* TODO: check if m_open_queue is not full */
assert(!m_open_queue.IsFull());
m_open_queue.Push(item);
if (&item == m_new_node) {
m_new_node = NULL;
}
}
/** return the best open node */
FORCEINLINE Titem_ *GetBestOpenNode()
{
if (!m_open_queue.IsEmpty()) {
Titem_& item = m_open_queue.GetHead();
return &item;
}
return NULL;
}
/** remove and return the best open node */
FORCEINLINE Titem_ *PopBestOpenNode()
{
if (!m_open_queue.IsEmpty()) {
Titem_& item = m_open_queue.PopHead();
m_open.Pop(item);
return &item;
}
return NULL;
}
/** return the open node specified by a key or NULL if not found */
FORCEINLINE Titem_ *FindOpenNode(const Key& key)
{
Titem_ *item = m_open.Find(key);
return item;
}
/** remove and return the open node specified by a key */
FORCEINLINE Titem_& PopOpenNode(const Key& key)
{
Titem_& item = m_open.Pop(key);
int idxPop = m_open_queue.FindLinear(item);
m_open_queue.RemoveByIdx(idxPop);
return item;
}
/** close node */
FORCEINLINE void InsertClosedNode(Titem_& item)
{
assert(m_open.Find(item.GetKey()) == NULL);
m_closed.Push(item);
}
/** return the closed node specified by a key or NULL if not found */
FORCEINLINE Titem_ *FindClosedNode(const Key& key)
{
Titem_ *item = m_closed.Find(key);
return item;
}
FORCEINLINE int TotalCount() {return m_arr.Size();}
FORCEINLINE Titem_& ItemAt(int idx) {return m_arr[idx];}
template <class D> void Dump(D &dmp) const
{
dmp.WriteStructT("m_arr", &m_arr);
}
};
#endif /* NODELIST_HPP */

119
src/pathfinder/yapf/yapf.h Normal file
View File

@@ -0,0 +1,119 @@
/* $Id$ */
/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file yapf.h Entry point for OpenTTD to YAPF. */
#ifndef YAPF_H
#define YAPF_H
#include "../../debug.h"
#include "../../depot_type.h"
#include "../../direction_type.h"
#include "../../station_type.h"
#include "../../pbs.h"
/** Finds the best path for given ship.
* @param v the ship that needs to find a path
* @param tile the tile to find the path from (should be next tile the ship is about to enter)
* @param enterdir diagonal direction which the ship will enter this new tile from
* @param tracks available tracks on the new tile (to choose from)
* @return the best trackdir for next turn or INVALID_TRACKDIR if the path could not be found
*/
Trackdir YapfChooseShipTrack(const Vehicle *v, TileIndex tile, DiagDirection enterdir, TrackBits tracks);
/** Finds the best path for given road vehicle.
* @param v the RV that needs to find a path
* @param tile the tile to find the path from (should be next tile the RV is about to enter)
* @param enterdir diagonal direction which the RV will enter this new tile from
* @return the best trackdir for next turn or INVALID_TRACKDIR if the path could not be found
*/
Trackdir YapfChooseRoadTrack(const Vehicle *v, TileIndex tile, DiagDirection enterdir);
/** Finds the best path for given train.
* @param v the train that needs to find a path
* @param tile the tile to find the path from (should be next tile the train is about to enter)
* @param enterdir diagonal direction which the RV will enter this new tile from
* @param tracks available trackdirs on the new tile (to choose from)
* @param path_not_found [out] true is returned if no path can be found (returned Trackdir is only a 'guess')
* @param reserve_track indicates whether YAPF should try to reserve the found path
* @param target [out] the target tile of the reservation, free is set to true if path was reserved
* @return the best trackdir for next turn or INVALID_TRACKDIR if the path could not be found
*/
Trackdir YapfChooseRailTrack(const Vehicle *v, TileIndex tile, DiagDirection enterdir, TrackBits tracks, bool *path_not_found, bool reserve_track, PBSTileInfo *target);
/** Used by RV multistop feature to find the nearest road stop that has a free slot.
* @param v RV (its current tile will be the origin)
* @param tile destination tile
* @return distance from origin tile to the destination (number of road tiles) or UINT_MAX if path not found
*/
uint YapfRoadVehDistanceToTile(const Vehicle *v, TileIndex tile);
/** Used to determinine the closest reachable compatible road stop for a given vehicle.
* @param v vehicle that needs to go to the road stop
* @param station the station the road stop must belong to
* @param stop_tile receives the stop tile if a stop was found
* @return true if stop was found.
*/
bool YapfFindNearestRoadVehicleCompatibleStop(const RoadVehicle *v, StationID station, TileIndex *stop_tile);
/** Used when user sends road vehicle to the nearest depot or if road vehicle needs servicing.
* @param v vehicle that needs to go to some depot
* @param max_distance max distance (number of track tiles) from the current vehicle position
* (used also as optimization - the pathfinder can stop path finding if max_distance
* was reached and no depot was seen)
* @param depot_tile receives the depot tile if depot was found
* @return true if depot was found.
*/
bool YapfFindNearestRoadDepot(const Vehicle *v, int max_distance, TileIndex *depot_tile);
/** Used when user sends train to the nearest depot or if train needs servicing.
* @param v train that needs to go to some depot
* @param max_distance max distance (number of track tiles) from the current train position
* (used also as optimization - the pathfinder can stop path finding if max_distance
* was reached and no depot was seen)
* @param reverse_penalty penalty that should be added for the path that requires reversing the train first
* @param depot_tile receives the depot tile if depot was found
* @param reversed receives true if train needs to reversed first
* @return true if depot was found.
*/
bool YapfFindNearestRailDepotTwoWay(const Vehicle *v, int max_distance, int reverse_penalty, TileIndex *depot_tile, bool *reversed);
/** Returns true if it is better to reverse the train before leaving station */
bool YapfCheckReverseTrain(const Vehicle *v);
/**
* Try to extend the reserved path of a train to the nearest safe tile.
*
* @param v The train that needs to find a safe tile.
* @param tile Last tile of the current reserved path.
* @param td Last trackdir of the current reserved path.
* @param override_railtype Should all physically compabtible railtypes be searched, even if the vehicle can't on them on it own?
* @return True if the path could be extended to a safe tile.
*/
bool YapfRailFindNearestSafeTile(const Vehicle *v, TileIndex tile, Trackdir td, bool override_railtype);
/** Use this function to notify YAPF that track layout (or signal configuration) has change */
void YapfNotifyTrackLayoutChange(TileIndex tile, Track track);
/** performance measurement helpers */
void *NpfBeginInterval();
int NpfEndInterval(void *perf);
extern int _aystar_stats_open_size;
extern int _aystar_stats_closed_size;
/** Base tile length units */
enum {
YAPF_TILE_LENGTH = 100,
YAPF_TILE_CORNER_LENGTH = 71
};
#endif /* YAPF_H */

View File

@@ -0,0 +1,129 @@
/* $Id$ */
/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file yapf.hpp Base includes/functions for YAPF. */
#ifndef YAPF_HPP
#define YAPF_HPP
#include "../../openttd.h"
#include "../../vehicle_base.h"
#include "../../road_map.h"
#include "../../tunnel_map.h"
#include "../../bridge_map.h"
#include "../../tunnelbridge_map.h"
#include "../../bridge.h"
#include "../../station_map.h"
#include "../../tile_cmd.h"
#include "../../landscape.h"
#include "yapf.h"
#include "../pathfinder_func.h"
#include "../../waypoint_base.h"
#include "../../debug.h"
#include "../../settings_type.h"
#include "../../tunnelbridge.h"
extern uint64 ottd_rdtsc();
#include <limits.h>
#include <new>
#if defined(_WIN32) || defined(_WIN64)
# include <windows.h>
#else
# include <time.h>
#endif
struct CPerformanceTimer
{
int64 m_start;
int64 m_acc;
CPerformanceTimer() : m_start(0), m_acc(0) {}
FORCEINLINE void Start()
{
m_start = QueryTime();
}
FORCEINLINE void Stop()
{
m_acc += QueryTime() - m_start;
}
FORCEINLINE int Get(int64 coef)
{
return (int)(m_acc * coef / QueryFrequency());
}
FORCEINLINE int64 QueryTime()
{
return ottd_rdtsc();
}
FORCEINLINE int64 QueryFrequency()
{
return ((int64)2200 * 1000000);
}
};
struct CPerfStartReal
{
CPerformanceTimer *m_pperf;
FORCEINLINE CPerfStartReal(CPerformanceTimer& perf) : m_pperf(&perf)
{
if (m_pperf != NULL) m_pperf->Start();
}
FORCEINLINE ~CPerfStartReal()
{
Stop();
}
FORCEINLINE void Stop()
{
if (m_pperf != NULL) {
m_pperf->Stop();
m_pperf = NULL;
}
}
};
struct CPerfStartFake
{
FORCEINLINE CPerfStartFake(CPerformanceTimer& perf) {}
FORCEINLINE ~CPerfStartFake() {}
FORCEINLINE void Stop() {}
};
typedef CPerfStartFake CPerfStart;
//#undef FORCEINLINE
//#define FORCEINLINE inline
#include "../../misc/crc32.hpp"
#include "../../misc/blob.hpp"
#include "../../misc/str.hpp"
#include "../../misc/fixedsizearray.hpp"
#include "../../misc/array.hpp"
#include "../../misc/hashtable.hpp"
#include "../../misc/binaryheap.hpp"
#include "../../misc/dbg_helpers.h"
#include "nodelist.hpp"
#include "follow_track.hpp"
#include "yapf_base.hpp"
#include "yapf_node.hpp"
#include "yapf_common.hpp"
#include "yapf_costbase.hpp"
#include "yapf_costcache.hpp"
#endif /* YAPF_HPP */

View File

@@ -0,0 +1,361 @@
/* $Id$ */
/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file yapf_base.hpp Base classes for YAPF. */
#ifndef YAPF_BASE_HPP
#define YAPF_BASE_HPP
#include "../../debug.h"
#include "../../settings_type.h"
extern int _total_pf_time_us;
/** CYapfBaseT - A-star type path finder base class.
* Derive your own pathfinder from it. You must provide the following template argument:
* Types - used as collection of local types used in pathfinder
*
* Requirements for the Types struct:
* ----------------------------------
* The following types must be defined in the 'Types' argument:
* - Types::Tpf - your pathfinder derived from CYapfBaseT
* - Types::NodeList - open/closed node list (look at CNodeList_HashTableT)
* NodeList needs to have defined local type Titem - defines the pathfinder node type.
* Node needs to define local type Key - the node key in the collection ()
*
* For node list you can use template class CNodeList_HashTableT, for which
* you need to declare only your node type. Look at test_yapf.h for an example.
*
*
* Requrements to your pathfinder class derived from CYapfBaseT:
* -------------------------------------------------------------
* Your pathfinder derived class needs to implement following methods:
* FORCEINLINE void PfSetStartupNodes()
* FORCEINLINE void PfFollowNode(Node& org)
* FORCEINLINE bool PfCalcCost(Node& n)
* FORCEINLINE bool PfCalcEstimate(Node& n)
* FORCEINLINE bool PfDetectDestination(Node& n)
*
* For more details about those methods, look at the end of CYapfBaseT
* declaration. There are some examples. For another example look at
* test_yapf.h (part or unittest project).
*/
template <class Types>
class CYapfBaseT {
public:
typedef typename Types::Tpf Tpf; ///< the pathfinder class (derived from THIS class)
typedef typename Types::TrackFollower TrackFollower;
typedef typename Types::NodeList NodeList; ///< our node list
typedef typename NodeList::Titem Node; ///< this will be our node type
typedef typename Node::Key Key; ///< key to hash tables
NodeList m_nodes; ///< node list multi-container
protected:
Node *m_pBestDestNode; ///< pointer to the destination node found at last round
Node *m_pBestIntermediateNode; ///< here should be node closest to the destination if path not found
const YAPFSettings *m_settings; ///< current settings (_settings_game.yapf)
int m_max_search_nodes; ///< maximum number of nodes we are allowed to visit before we give up
const Vehicle *m_veh; ///< vehicle that we are trying to drive
int m_stats_cost_calcs; ///< stats - how many node's costs were calculated
int m_stats_cache_hits; ///< stats - how many node's costs were reused from cache
public:
CPerformanceTimer m_perf_cost; ///< stats - total CPU time of this run
CPerformanceTimer m_perf_slope_cost; ///< stats - slope calculation CPU time
CPerformanceTimer m_perf_ts_cost; ///< stats - GetTrackStatus() CPU time
CPerformanceTimer m_perf_other_cost; ///< stats - other CPU time
public:
int m_num_steps; ///< this is there for debugging purposes (hope it doesn't hurt)
public:
/** default constructor */
FORCEINLINE CYapfBaseT()
: m_pBestDestNode(NULL)
, m_pBestIntermediateNode(NULL)
, m_settings(&_settings_game.pf.yapf)
, m_max_search_nodes(PfGetSettings().max_search_nodes)
, m_veh(NULL)
, m_stats_cost_calcs(0)
, m_stats_cache_hits(0)
, m_num_steps(0)
{
}
/** default destructor */
~CYapfBaseT() {}
protected:
/** to access inherited path finder */
FORCEINLINE Tpf& Yapf()
{
return *static_cast<Tpf*>(this);
}
public:
/** return current settings (can be custom - company based - but later) */
FORCEINLINE const YAPFSettings& PfGetSettings() const
{
return *m_settings;
}
/** Main pathfinder routine:
* - set startup node(s)
* - main loop that stops if:
* - the destination was found
* - or the open list is empty (no route to destination).
* - or the maximum amount of loops reached - m_max_search_nodes (default = 10000)
* @return true if the path was found */
inline bool FindPath(const Vehicle *v)
{
m_veh = v;
#ifndef NO_DEBUG_MESSAGES
CPerformanceTimer perf;
perf.Start();
#endif /* !NO_DEBUG_MESSAGES */
Yapf().PfSetStartupNodes();
while (true) {
m_num_steps++;
Node *n = m_nodes.GetBestOpenNode();
if (n == NULL) {
break;
}
/* if the best open node was worse than the best path found, we can finish */
if (m_pBestDestNode != NULL && m_pBestDestNode->GetCost() < n->GetCostEstimate()) {
break;
}
Yapf().PfFollowNode(*n);
if (m_max_search_nodes == 0 || m_nodes.ClosedCount() < m_max_search_nodes) {
m_nodes.PopOpenNode(n->GetKey());
m_nodes.InsertClosedNode(*n);
} else {
m_pBestDestNode = m_pBestIntermediateNode;
break;
}
}
bool bDestFound = (m_pBestDestNode != NULL) && (m_pBestDestNode != m_pBestIntermediateNode);
#ifndef NO_DEBUG_MESSAGES
perf.Stop();
if (_debug_yapf_level >= 2) {
int t = perf.Get(1000000);
_total_pf_time_us += t;
if (_debug_yapf_level >= 3) {
UnitID veh_idx = (m_veh != NULL) ? m_veh->unitnumber : 0;
char ttc = Yapf().TransportTypeChar();
float cache_hit_ratio = (m_stats_cache_hits == 0) ? 0.0f : ((float)m_stats_cache_hits / (float)(m_stats_cache_hits + m_stats_cost_calcs) * 100.0f);
int cost = bDestFound ? m_pBestDestNode->m_cost : -1;
int dist = bDestFound ? m_pBestDestNode->m_estimate - m_pBestDestNode->m_cost : -1;
DEBUG(yapf, 3, "[YAPF%c]%c%4d- %d us - %d rounds - %d open - %d closed - CHR %4.1f%% - C %d D %d - c%d(sc%d, ts%d, o%d) -- ",
ttc, bDestFound ? '-' : '!', veh_idx, t, m_num_steps, m_nodes.OpenCount(), m_nodes.ClosedCount(),
cache_hit_ratio, cost, dist, m_perf_cost.Get(1000000), m_perf_slope_cost.Get(1000000),
m_perf_ts_cost.Get(1000000), m_perf_other_cost.Get(1000000)
);
}
}
#endif /* !NO_DEBUG_MESSAGES */
return bDestFound;
}
/** If path was found return the best node that has reached the destination. Otherwise
* return the best visited node (which was nearest to the destination).
*/
FORCEINLINE Node *GetBestNode()
{
return (m_pBestDestNode != NULL) ? m_pBestDestNode : m_pBestIntermediateNode;
}
/** Calls NodeList::CreateNewNode() - allocates new node that can be filled and used
* as argument for AddStartupNode() or AddNewNode()
*/
FORCEINLINE Node& CreateNewNode()
{
Node& node = *m_nodes.CreateNewNode();
return node;
}
/** Add new node (created by CreateNewNode and filled with data) into open list */
FORCEINLINE void AddStartupNode(Node& n)
{
Yapf().PfNodeCacheFetch(n);
/* insert the new node only if it is not there */
if (m_nodes.FindOpenNode(n.m_key) == NULL) {
m_nodes.InsertOpenNode(n);
} else {
/* if we are here, it means that node is already there - how it is possible?
* probably the train is in the position that both its ends point to the same tile/exit-dir
* very unlikely, but it happened */
}
}
/** add multiple nodes - direct children of the given node */
FORCEINLINE void AddMultipleNodes(Node *parent, const TrackFollower &tf)
{
bool is_choice = (KillFirstBit(tf.m_new_td_bits) != TRACKDIR_BIT_NONE);
for (TrackdirBits rtds = tf.m_new_td_bits; rtds != TRACKDIR_BIT_NONE; rtds = KillFirstBit(rtds)) {
Trackdir td = (Trackdir)FindFirstBit2x64(rtds);
Node& n = Yapf().CreateNewNode();
n.Set(parent, tf.m_new_tile, td, is_choice);
Yapf().AddNewNode(n, tf);
}
}
/** AddNewNode() - called by Tderived::PfFollowNode() for each child node.
* Nodes are evaluated here and added into open list */
void AddNewNode(Node &n, const TrackFollower &tf)
{
/* evaluate the node */
bool bCached = Yapf().PfNodeCacheFetch(n);
if (!bCached) {
m_stats_cost_calcs++;
} else {
m_stats_cache_hits++;
}
bool bValid = Yapf().PfCalcCost(n, &tf);
if (bCached) {
Yapf().PfNodeCacheFlush(n);
}
if (bValid) bValid = Yapf().PfCalcEstimate(n);
/* have the cost or estimate callbacks marked this node as invalid? */
if (!bValid) return;
/* detect the destination */
bool bDestination = Yapf().PfDetectDestination(n);
if (bDestination) {
if (m_pBestDestNode == NULL || n < *m_pBestDestNode) {
m_pBestDestNode = &n;
}
m_nodes.FoundBestNode(n);
return;
}
if (m_max_search_nodes > 0 && (m_pBestIntermediateNode == NULL || (m_pBestIntermediateNode->GetCostEstimate() - m_pBestIntermediateNode->GetCost()) > (n.GetCostEstimate() - n.GetCost()))) {
m_pBestIntermediateNode = &n;
}
/* check new node against open list */
Node *openNode = m_nodes.FindOpenNode(n.GetKey());
if (openNode != NULL) {
/* another node exists with the same key in the open list
* is it better than new one? */
if (n.GetCostEstimate() < openNode->GetCostEstimate()) {
/* update the old node by value from new one */
m_nodes.PopOpenNode(n.GetKey());
*openNode = n;
/* add the updated old node back to open list */
m_nodes.InsertOpenNode(*openNode);
}
return;
}
/* check new node against closed list */
Node *closedNode = m_nodes.FindClosedNode(n.GetKey());
if (closedNode != NULL) {
/* another node exists with the same key in the closed list
* is it better than new one? */
int node_est = n.GetCostEstimate();
int closed_est = closedNode->GetCostEstimate();
if (node_est < closed_est) {
/* If this assert occurs, you have probably problem in
* your Tderived::PfCalcCost() or Tderived::PfCalcEstimate().
* The problem could be:
* - PfCalcEstimate() gives too large numbers
* - PfCalcCost() gives too small numbers
* - You have used negative cost penalty in some cases (cost bonus) */
NOT_REACHED();
}
return;
}
/* the new node is really new
* add it to the open list */
m_nodes.InsertOpenNode(n);
}
const Vehicle * GetVehicle() const
{
return m_veh;
}
void DumpBase(DumpTarget &dmp) const
{
dmp.WriteStructT("m_nodes", &m_nodes);
dmp.WriteLine("m_num_steps = %d", m_num_steps);
}
/* methods that should be implemented at derived class Types::Tpf (derived from CYapfBaseT) */
#if 0
/** Example: PfSetStartupNodes() - set source (origin) nodes */
FORCEINLINE void PfSetStartupNodes()
{
/* example: */
Node& n1 = *base::m_nodes.CreateNewNode();
.
. // setup node members here
.
base::m_nodes.InsertOpenNode(n1);
}
/** Example: PfFollowNode() - set following (child) nodes of the given node */
FORCEINLINE void PfFollowNode(Node& org)
{
for (each follower of node org) {
Node& n = *base::m_nodes.CreateNewNode();
.
. // setup node members here
.
n.m_parent = &org; // set node's parent to allow back tracking
AddNewNode(n);
}
}
/** Example: PfCalcCost() - set path cost from origin to the given node */
FORCEINLINE bool PfCalcCost(Node& n)
{
/* evaluate last step cost */
int cost = ...;
/* set the node cost as sum of parent's cost and last step cost */
n.m_cost = n.m_parent->m_cost + cost;
return true; // true if node is valid follower (i.e. no obstacle was found)
}
/** Example: PfCalcEstimate() - set path cost estimate from origin to the target through given node */
FORCEINLINE bool PfCalcEstimate(Node& n)
{
/* evaluate the distance to our destination */
int distance = ...;
/* set estimate as sum of cost from origin + distance to the target */
n.m_estimate = n.m_cost + distance;
return true; // true if node is valid (i.e. not too far away :)
}
/** Example: PfDetectDestination() - return true if the given node is our destination */
FORCEINLINE bool PfDetectDestination(Node& n)
{
bool bDest = (n.m_key.m_x == m_x2) && (n.m_key.m_y == m_y2);
return bDest;
}
#endif
};
#endif /* YAPF_BASE_HPP */

View File

@@ -0,0 +1,194 @@
/* $Id$ */
/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file yapf_common.hpp Commonly used classes for YAPF. */
#ifndef YAPF_COMMON_HPP
#define YAPF_COMMON_HPP
/** YAPF origin provider base class - used when origin is one tile / multiple trackdirs */
template <class Types>
class CYapfOriginTileT
{
public:
typedef typename Types::Tpf Tpf; ///< the pathfinder class (derived from THIS class)
typedef typename Types::NodeList::Titem Node; ///< this will be our node type
typedef typename Node::Key Key; ///< key to hash tables
protected:
TileIndex m_orgTile; ///< origin tile
TrackdirBits m_orgTrackdirs; ///< origin trackdir mask
/** to access inherited path finder */
FORCEINLINE Tpf& Yapf()
{
return *static_cast<Tpf*>(this);
}
public:
/** Set origin tile / trackdir mask */
void SetOrigin(TileIndex tile, TrackdirBits trackdirs)
{
m_orgTile = tile;
m_orgTrackdirs = trackdirs;
}
/** Called when YAPF needs to place origin nodes into open list */
void PfSetStartupNodes()
{
bool is_choice = (KillFirstBit(m_orgTrackdirs) != TRACKDIR_BIT_NONE);
for (TrackdirBits tdb = m_orgTrackdirs; tdb != TRACKDIR_BIT_NONE; tdb = KillFirstBit(tdb)) {
Trackdir td = (Trackdir)FindFirstBit2x64(tdb);
Node& n1 = Yapf().CreateNewNode();
n1.Set(NULL, m_orgTile, td, is_choice);
Yapf().AddStartupNode(n1);
}
}
};
/** YAPF origin provider base class - used when there are two tile/trackdir origins */
template <class Types>
class CYapfOriginTileTwoWayT
{
public:
typedef typename Types::Tpf Tpf; ///< the pathfinder class (derived from THIS class)
typedef typename Types::NodeList::Titem Node; ///< this will be our node type
typedef typename Node::Key Key; ///< key to hash tables
protected:
TileIndex m_orgTile; ///< first origin tile
Trackdir m_orgTd; ///< first origin trackdir
TileIndex m_revTile; ///< second (reversed) origin tile
Trackdir m_revTd; ///< second (reversed) origin trackdir
int m_reverse_penalty; ///< penalty to be added for using the reversed origin
bool m_treat_first_red_two_way_signal_as_eol; ///< in some cases (leaving station) we need to handle first two-way signal differently
/** to access inherited path finder */
FORCEINLINE Tpf& Yapf()
{
return *static_cast<Tpf*>(this);
}
public:
/** set origin (tiles, trackdirs, etc.) */
void SetOrigin(TileIndex tile, Trackdir td, TileIndex tiler = INVALID_TILE, Trackdir tdr = INVALID_TRACKDIR, int reverse_penalty = 0, bool treat_first_red_two_way_signal_as_eol = true)
{
m_orgTile = tile;
m_orgTd = td;
m_revTile = tiler;
m_revTd = tdr;
m_reverse_penalty = reverse_penalty;
m_treat_first_red_two_way_signal_as_eol = treat_first_red_two_way_signal_as_eol;
}
/** Called when YAPF needs to place origin nodes into open list */
void PfSetStartupNodes()
{
if (m_orgTile != INVALID_TILE && m_orgTd != INVALID_TRACKDIR) {
Node& n1 = Yapf().CreateNewNode();
n1.Set(NULL, m_orgTile, m_orgTd, false);
Yapf().AddStartupNode(n1);
}
if (m_revTile != INVALID_TILE && m_revTd != INVALID_TRACKDIR) {
Node& n2 = Yapf().CreateNewNode();
n2.Set(NULL, m_revTile, m_revTd, false);
n2.m_cost = m_reverse_penalty;
Yapf().AddStartupNode(n2);
}
}
/** return true if first two-way signal should be treated as dead end */
FORCEINLINE bool TreatFirstRedTwoWaySignalAsEOL()
{
return Yapf().PfGetSettings().rail_firstred_twoway_eol && m_treat_first_red_two_way_signal_as_eol;
}
};
/** YAPF destination provider base class - used when destination is single tile / multiple trackdirs */
template <class Types>
class CYapfDestinationTileT
{
public:
typedef typename Types::Tpf Tpf; ///< the pathfinder class (derived from THIS class)
typedef typename Types::NodeList::Titem Node; ///< this will be our node type
typedef typename Node::Key Key; ///< key to hash tables
protected:
TileIndex m_destTile; ///< destination tile
TrackdirBits m_destTrackdirs; ///< destination trackdir mask
public:
/** set the destination tile / more trackdirs */
void SetDestination(TileIndex tile, TrackdirBits trackdirs)
{
m_destTile = tile;
m_destTrackdirs = trackdirs;
}
protected:
/** to access inherited path finder */
Tpf& Yapf()
{
return *static_cast<Tpf*>(this);
}
public:
/** Called by YAPF to detect if node ends in the desired destination */
FORCEINLINE bool PfDetectDestination(Node& n)
{
bool bDest = (n.m_key.m_tile == m_destTile) && ((m_destTrackdirs & TrackdirToTrackdirBits(n.GetTrackdir())) != TRACKDIR_BIT_NONE);
return bDest;
}
/** Called by YAPF to calculate cost estimate. Calculates distance to the destination
* adds it to the actual cost from origin and stores the sum to the Node::m_estimate */
inline bool PfCalcEstimate(Node& n)
{
static const int dg_dir_to_x_offs[] = {-1, 0, 1, 0};
static const int dg_dir_to_y_offs[] = {0, 1, 0, -1};
if (PfDetectDestination(n)) {
n.m_estimate = n.m_cost;
return true;
}
TileIndex tile = n.GetTile();
DiagDirection exitdir = TrackdirToExitdir(n.GetTrackdir());
int x1 = 2 * TileX(tile) + dg_dir_to_x_offs[(int)exitdir];
int y1 = 2 * TileY(tile) + dg_dir_to_y_offs[(int)exitdir];
int x2 = 2 * TileX(m_destTile);
int y2 = 2 * TileY(m_destTile);
int dx = abs(x1 - x2);
int dy = abs(y1 - y2);
int dmin = min(dx, dy);
int dxy = abs(dx - dy);
int d = dmin * YAPF_TILE_CORNER_LENGTH + (dxy - 1) * (YAPF_TILE_LENGTH / 2);
n.m_estimate = n.m_cost + d;
assert(n.m_estimate >= n.m_parent->m_estimate);
return true;
}
};
/** YAPF template that uses Ttypes template argument to determine all YAPF
* components (base classes) from which the actual YAPF is composed.
* For example classes consult: CYapfRail_TypesT template and its instantiations:
* CYapfRail1, CYapfRail2, CYapfRail3, CYapfAnyDepotRail1, CYapfAnyDepotRail2, CYapfAnyDepotRail3 */
template <class Ttypes>
class CYapfT
: public Ttypes::PfBase ///< Instance of CYapfBaseT - main YAPF loop and support base class
, public Ttypes::PfCost ///< Cost calculation provider base class
, public Ttypes::PfCache ///< Segment cost cache provider
, public Ttypes::PfOrigin ///< Origin (tile or two-tile origin)
, public Ttypes::PfDestination ///< Destination detector and distance (estimate) calculation provider
, public Ttypes::PfFollow ///< Node follower (stepping provider)
{
};
#endif /* YAPF_COMMON_HPP */

View File

@@ -0,0 +1,42 @@
/* $Id$ */
/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file yapf_costbase.hpp Handling of cost determination. */
#ifndef YAPF_COSTBASE_HPP
#define YAPF_COSTBASE_HPP
struct CYapfCostBase {
FORCEINLINE static bool stSlopeCost(TileIndex tile, Trackdir td)
{
if (IsDiagonalTrackdir(td)) {
if (IsBridgeTile(tile)) {
/* it is bridge ramp, check if we are entering the bridge */
if (GetTunnelBridgeDirection(tile) != TrackdirToExitdir(td)) return false; // no, we are leaving it, no penalty
/* we are entering the bridge */
Slope tile_slope = GetTileSlope(tile, NULL);
Axis axis = DiagDirToAxis(GetTunnelBridgeDirection(tile));
return !HasBridgeFlatRamp(tile_slope, axis);
} else {
/* not bridge ramp */
if (IsTunnelTile(tile)) return false; // tunnel entry/exit doesn't slope
Slope tile_slope = GetTileSlope(tile, NULL);
return IsUphillTrackdir(tile_slope, td); // slopes uphill => apply penalty
}
}
return false;
}
};
struct CostRailSettings {
/* look-ahead signal penalty */
};
#endif /* YAPF_COSTBASE_HPP */

View File

@@ -0,0 +1,216 @@
/* $Id$ */
/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file yapf_costcache.hpp Caching of segment costs. */
#ifndef YAPF_COSTCACHE_HPP
#define YAPF_COSTCACHE_HPP
#include "../../date_func.h"
/** CYapfSegmentCostCacheNoneT - the formal only yapf cost cache provider that implements
* PfNodeCacheFetch() and PfNodeCacheFlush() callbacks. Used when nodes don't have CachedData
* defined (they don't count with any segment cost caching).
*/
template <class Types>
class CYapfSegmentCostCacheNoneT
{
public:
typedef typename Types::Tpf Tpf; ///< the pathfinder class (derived from THIS class)
typedef typename Types::NodeList::Titem Node; ///< this will be our node type
/** Called by YAPF to attach cached or local segment cost data to the given node.
* @return true if globally cached data were used or false if local data was used */
FORCEINLINE bool PfNodeCacheFetch(Node& n)
{
return false;
}
/** Called by YAPF to flush the cached segment cost data back into cache storage.
* Current cache implementation doesn't use that. */
FORCEINLINE void PfNodeCacheFlush(Node& n)
{
}
};
/** CYapfSegmentCostCacheLocalT - the yapf cost cache provider that implements fake segment
* cost caching functionality for yapf. Used when node needs caching, but you don't want to
* cache the segment costs.
*/
template <class Types>
class CYapfSegmentCostCacheLocalT
{
public:
typedef typename Types::Tpf Tpf; ///< the pathfinder class (derived from THIS class)
typedef typename Types::NodeList::Titem Node; ///< this will be our node type
typedef typename Node::Key Key; ///< key to hash tables
typedef typename Node::CachedData CachedData;
typedef typename CachedData::Key CacheKey;
typedef CArrayT<CachedData> LocalCache;
protected:
LocalCache m_local_cache;
/** to access inherited path finder */
FORCEINLINE Tpf& Yapf()
{
return *static_cast<Tpf*>(this);
}
public:
/** Called by YAPF to attach cached or local segment cost data to the given node.
* @return true if globally cached data were used or false if local data was used */
FORCEINLINE bool PfNodeCacheFetch(Node& n)
{
CacheKey key(n.GetKey());
Yapf().ConnectNodeToCachedData(n, *new (&m_local_cache.AddNC()) CachedData(key));
return false;
}
/** Called by YAPF to flush the cached segment cost data back into cache storage.
* Current cache implementation doesn't use that. */
FORCEINLINE void PfNodeCacheFlush(Node& n)
{
}
};
/** Base class for segment cost cache providers. Contains global counter
* of track layout changes and static notification function called whenever
* the track layout changes. It is implemented as base class because it needs
* to be shared between all rail YAPF types (one shared counter, one notification
* function. */
struct CSegmentCostCacheBase
{
static int s_rail_change_counter;
static void NotifyTrackLayoutChange(TileIndex tile, Track track)
{
s_rail_change_counter++;
}
};
/** CSegmentCostCacheT - template class providing hash-map and storage (heap)
* of Tsegment structures. Each rail node contains pointer to the segment
* that contains cached (or non-cached) segment cost information. Nodes can
* differ by key type, but they use the same segment type. Segment key should
* be always the same (TileIndex + DiagDirection) that represent the beginning
* of the segment (origin tile and exit-dir from this tile).
* Different CYapfCachedCostT types can share the same type of CSegmentCostCacheT.
* Look at CYapfRailSegment (yapf_node_rail.hpp) for the segment example */
template <class Tsegment>
struct CSegmentCostCacheT
: public CSegmentCostCacheBase
{
enum {c_hash_bits = 14};
typedef CHashTableT<Tsegment, c_hash_bits> HashTable;
typedef CArrayT<Tsegment> Heap;
typedef typename Tsegment::Key Key; ///< key to hash table
HashTable m_map;
Heap m_heap;
FORCEINLINE CSegmentCostCacheT() {}
/** flush (clear) the cache */
FORCEINLINE void Flush()
{
m_map.Clear();
m_heap.Clear();
}
FORCEINLINE Tsegment& Get(Key& key, bool *found)
{
Tsegment *item = m_map.Find(key);
if (item == NULL) {
*found = false;
item = new (&m_heap.AddNC()) Tsegment(key);
m_map.Push(*item);
} else {
*found = true;
}
return *item;
}
};
/** CYapfSegmentCostCacheGlobalT - the yapf cost cache provider that adds the segment cost
* caching functionality to yapf. Using this class as base of your will provide the global
* segment cost caching services for your Nodes.
*/
template <class Types>
class CYapfSegmentCostCacheGlobalT
: public CYapfSegmentCostCacheLocalT<Types>
{
public:
typedef CYapfSegmentCostCacheLocalT<Types> Tlocal;
typedef typename Types::Tpf Tpf; ///< the pathfinder class (derived from THIS class)
typedef typename Types::NodeList::Titem Node; ///< this will be our node type
typedef typename Node::Key Key; ///< key to hash tables
typedef typename Node::CachedData CachedData;
typedef typename CachedData::Key CacheKey;
typedef CSegmentCostCacheT<CachedData> Cache;
protected:
Cache& m_global_cache;
FORCEINLINE CYapfSegmentCostCacheGlobalT() : m_global_cache(stGetGlobalCache()) {};
/** to access inherited path finder */
FORCEINLINE Tpf& Yapf()
{
return *static_cast<Tpf*>(this);
}
FORCEINLINE static Cache& stGetGlobalCache()
{
static int last_rail_change_counter = 0;
static Date last_date = 0;
static Cache C;
/* some statistics */
if (last_date != _date) {
last_date = _date;
DEBUG(yapf, 2, "Pf time today: %5d ms", _total_pf_time_us / 1000);
_total_pf_time_us = 0;
}
/* delete the cache sometimes... */
if (last_rail_change_counter != Cache::s_rail_change_counter) {
last_rail_change_counter = Cache::s_rail_change_counter;
C.Flush();
}
return C;
}
public:
/** Called by YAPF to attach cached or local segment cost data to the given node.
* @return true if globally cached data were used or false if local data was used */
FORCEINLINE bool PfNodeCacheFetch(Node& n)
{
if (!Yapf().CanUseGlobalCache(n)) {
return Tlocal::PfNodeCacheFetch(n);
}
CacheKey key(n.GetKey());
bool found;
CachedData& item = m_global_cache.Get(key, &found);
Yapf().ConnectNodeToCachedData(n, item);
return found;
}
/** Called by YAPF to flush the cached segment cost data back into cache storage.
* Current cache implementation doesn't use that. */
FORCEINLINE void PfNodeCacheFlush(Node& n)
{
}
};
#endif /* YAPF_COSTCACHE_HPP */

View File

@@ -0,0 +1,591 @@
/* $Id$ */
/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file yapf_costrail.hpp Cost determination for rails. */
#ifndef YAPF_COSTRAIL_HPP
#define YAPF_COSTRAIL_HPP
#include "../../pbs.h"
template <class Types>
class CYapfCostRailT
: public CYapfCostBase
, public CostRailSettings
{
public:
typedef typename Types::Tpf Tpf; ///< the pathfinder class (derived from THIS class)
typedef typename Types::TrackFollower TrackFollower;
typedef typename Types::NodeList::Titem Node; ///< this will be our node type
typedef typename Node::Key Key; ///< key to hash tables
typedef typename Node::CachedData CachedData;
protected:
/* Structure used inside PfCalcCost() to keep basic tile information. */
struct TILE {
TileIndex tile;
Trackdir td;
TileType tile_type;
RailType rail_type;
TILE()
{
tile = INVALID_TILE;
td = INVALID_TRACKDIR;
tile_type = MP_VOID;
rail_type = INVALID_RAILTYPE;
}
TILE(TileIndex tile, Trackdir td)
{
this->tile = tile;
this->td = td;
this->tile_type = GetTileType(tile);
this->rail_type = GetTileRailType(tile);
}
TILE(const TILE &src)
{
tile = src.tile;
td = src.td;
tile_type = src.tile_type;
rail_type = src.rail_type;
}
};
protected:
/**
* @note maximum cost doesn't work with caching enabled
* @todo fix maximum cost failing with caching (e.g. FS#2900)
*/
int m_max_cost;
CBlobT<int> m_sig_look_ahead_costs;
bool m_disable_cache;
public:
bool m_stopped_on_first_two_way_signal;
protected:
static const int s_max_segment_cost = 10000;
CYapfCostRailT()
: m_max_cost(0)
, m_disable_cache(false)
, m_stopped_on_first_two_way_signal(false)
{
/* pre-compute look-ahead penalties into array */
int p0 = Yapf().PfGetSettings().rail_look_ahead_signal_p0;
int p1 = Yapf().PfGetSettings().rail_look_ahead_signal_p1;
int p2 = Yapf().PfGetSettings().rail_look_ahead_signal_p2;
int *pen = m_sig_look_ahead_costs.GrowSizeNC(Yapf().PfGetSettings().rail_look_ahead_max_signals);
for (uint i = 0; i < Yapf().PfGetSettings().rail_look_ahead_max_signals; i++) {
pen[i] = p0 + i * (p1 + i * p2);
}
}
/** to access inherited path finder */
Tpf& Yapf()
{
return *static_cast<Tpf*>(this);
}
public:
FORCEINLINE int SlopeCost(TileIndex tile, Trackdir td)
{
CPerfStart perf_cost(Yapf().m_perf_slope_cost);
if (!stSlopeCost(tile, td)) return 0;
return Yapf().PfGetSettings().rail_slope_penalty;
}
FORCEINLINE int CurveCost(Trackdir td1, Trackdir td2)
{
assert(IsValidTrackdir(td1));
assert(IsValidTrackdir(td2));
int cost = 0;
if (TrackFollower::Allow90degTurns()
&& ((TrackdirToTrackdirBits(td2) & (TrackdirBits)TrackdirCrossesTrackdirs(td1)) != 0)) {
/* 90-deg curve penalty */
cost += Yapf().PfGetSettings().rail_curve90_penalty;
} else if (td2 != NextTrackdir(td1)) {
/* 45-deg curve penalty */
cost += Yapf().PfGetSettings().rail_curve45_penalty;
}
return cost;
}
FORCEINLINE int SwitchCost(TileIndex tile1, TileIndex tile2, DiagDirection exitdir)
{
if (IsPlainRailTile(tile1) && IsPlainRailTile(tile2)) {
bool t1 = KillFirstBit(GetTrackBits(tile1) & DiagdirReachesTracks(ReverseDiagDir(exitdir))) != TRACK_BIT_NONE;
bool t2 = KillFirstBit(GetTrackBits(tile2) & DiagdirReachesTracks(exitdir)) != TRACK_BIT_NONE;
if (t1 && t2) return Yapf().PfGetSettings().rail_doubleslip_penalty;
}
return 0;
}
/** Return one tile cost (base cost + level crossing penalty). */
FORCEINLINE int OneTileCost(TileIndex& tile, Trackdir trackdir)
{
int cost = 0;
/* set base cost */
if (IsDiagonalTrackdir(trackdir)) {
cost += YAPF_TILE_LENGTH;
switch (GetTileType(tile)) {
case MP_ROAD:
/* Increase the cost for level crossings */
if (IsLevelCrossing(tile)) {
cost += Yapf().PfGetSettings().rail_crossing_penalty;
}
break;
default:
break;
}
} else {
/* non-diagonal trackdir */
cost = YAPF_TILE_CORNER_LENGTH;
}
return cost;
}
/** Check for a reserved station platform. */
FORCEINLINE bool IsAnyStationTileReserved(TileIndex tile, Trackdir trackdir, int skipped)
{
TileIndexDiff diff = TileOffsByDiagDir(TrackdirToExitdir(ReverseTrackdir(trackdir)));
for (; skipped >= 0; skipped--, tile += diff) {
if (HasStationReservation(tile)) return true;
}
return false;
}
/** The cost for reserved tiles, including skipped ones. */
FORCEINLINE int ReservationCost(Node& n, TileIndex tile, Trackdir trackdir, int skipped)
{
if (n.m_num_signals_passed >= m_sig_look_ahead_costs.Size() / 2) return 0;
if (IsRailStationTile(tile) && IsAnyStationTileReserved(tile, trackdir, skipped)) {
return Yapf().PfGetSettings().rail_pbs_station_penalty * (skipped + 1);
} else if (TrackOverlapsTracks(GetReservedTrackbits(tile), TrackdirToTrack(trackdir))) {
int cost = Yapf().PfGetSettings().rail_pbs_cross_penalty;
if (!IsDiagonalTrackdir(trackdir)) cost = (cost * YAPF_TILE_CORNER_LENGTH) / YAPF_TILE_LENGTH;
return cost * (skipped + 1);
}
return 0;
}
int SignalCost(Node& n, TileIndex tile, Trackdir trackdir)
{
int cost = 0;
/* if there is one-way signal in the opposite direction, then it is not our way */
CPerfStart perf_cost(Yapf().m_perf_other_cost);
if (IsTileType(tile, MP_RAILWAY)) {
bool has_signal_against = HasSignalOnTrackdir(tile, ReverseTrackdir(trackdir));
bool has_signal_along = HasSignalOnTrackdir(tile, trackdir);
if (has_signal_against && !has_signal_along && IsOnewaySignal(tile, TrackdirToTrack(trackdir))) {
/* one-way signal in opposite direction */
n.m_segment->m_end_segment_reason |= ESRB_DEAD_END;
} else {
if (has_signal_along) {
SignalState sig_state = GetSignalStateByTrackdir(tile, trackdir);
/* cache the look-ahead polynomial constant only if we didn't pass more signals than the look-ahead limit is */
int look_ahead_cost = (n.m_num_signals_passed < m_sig_look_ahead_costs.Size()) ? m_sig_look_ahead_costs.Data()[n.m_num_signals_passed] : 0;
if (sig_state != SIGNAL_STATE_RED) {
/* green signal */
n.flags_u.flags_s.m_last_signal_was_red = false;
/* negative look-ahead red-signal penalties would cause problems later, so use them as positive penalties for green signal */
if (look_ahead_cost < 0) {
/* add its negation to the cost */
cost -= look_ahead_cost;
}
} else {
SignalType sig_type = GetSignalType(tile, TrackdirToTrack(trackdir));
/* we have a red signal in our direction
* was it first signal which is two-way? */
if (!IsPbsSignal(sig_type) && Yapf().TreatFirstRedTwoWaySignalAsEOL() && n.flags_u.flags_s.m_choice_seen && has_signal_against && n.m_num_signals_passed == 0) {
/* yes, the first signal is two-way red signal => DEAD END */
n.m_segment->m_end_segment_reason |= ESRB_DEAD_END;
Yapf().m_stopped_on_first_two_way_signal = true;
return -1;
}
n.m_last_red_signal_type = sig_type;
n.flags_u.flags_s.m_last_signal_was_red = true;
/* look-ahead signal penalty */
if (!IsPbsSignal(sig_type) && look_ahead_cost > 0) {
/* add the look ahead penalty only if it is positive */
cost += look_ahead_cost;
}
/* special signal penalties */
if (n.m_num_signals_passed == 0) {
switch (sig_type) {
case SIGTYPE_COMBO:
case SIGTYPE_EXIT: cost += Yapf().PfGetSettings().rail_firstred_exit_penalty; break; // first signal is red pre-signal-exit
case SIGTYPE_NORMAL:
case SIGTYPE_ENTRY: cost += Yapf().PfGetSettings().rail_firstred_penalty; break;
default: break;
}
}
}
n.m_num_signals_passed++;
n.m_segment->m_last_signal_tile = tile;
n.m_segment->m_last_signal_td = trackdir;
}
if (has_signal_against && IsPbsSignal(GetSignalType(tile, TrackdirToTrack(trackdir)))) {
cost += n.m_num_signals_passed < Yapf().PfGetSettings().rail_look_ahead_max_signals ? Yapf().PfGetSettings().rail_pbs_signal_back_penalty : 0;
}
}
}
return cost;
}
FORCEINLINE int PlatformLengthPenalty(int platform_length)
{
int cost = 0;
const Vehicle *v = Yapf().GetVehicle();
assert(v != NULL);
assert(v->type == VEH_TRAIN);
assert(Train::From(v)->tcache.cached_total_length != 0);
int missing_platform_length = (Train::From(v)->tcache.cached_total_length + TILE_SIZE - 1) / TILE_SIZE - platform_length;
if (missing_platform_length < 0) {
/* apply penalty for longer platform than needed */
cost += Yapf().PfGetSettings().rail_longer_platform_penalty + Yapf().PfGetSettings().rail_longer_platform_per_tile_penalty * -missing_platform_length;
} else if (missing_platform_length > 0) {
/* apply penalty for shorter platform than needed */
cost += Yapf().PfGetSettings().rail_shorter_platform_penalty + Yapf().PfGetSettings().rail_shorter_platform_per_tile_penalty * missing_platform_length;
}
return cost;
}
public:
FORCEINLINE void SetMaxCost(int max_cost)
{
m_max_cost = max_cost;
}
/** Called by YAPF to calculate the cost from the origin to the given node.
* Calculates only the cost of given node, adds it to the parent node cost
* and stores the result into Node::m_cost member */
FORCEINLINE bool PfCalcCost(Node &n, const TrackFollower *tf)
{
assert(!n.flags_u.flags_s.m_targed_seen);
assert(tf->m_new_tile == n.m_key.m_tile);
assert((TrackdirToTrackdirBits(n.m_key.m_td) & tf->m_new_td_bits) != TRACKDIR_BIT_NONE);
CPerfStart perf_cost(Yapf().m_perf_cost);
/* Does the node have some parent node? */
bool has_parent = (n.m_parent != NULL);
/* Do we already have a cached segment? */
CachedData &segment = *n.m_segment;
bool is_cached_segment = (segment.m_cost >= 0);
int parent_cost = has_parent ? n.m_parent->m_cost : 0;
/* Each node cost contains 2 or 3 main components:
* 1. Transition cost - cost of the move from previous node (tile):
* - curve cost (or zero for straight move)
* 2. Tile cost:
* - base tile cost
* - YAPF_TILE_LENGTH for diagonal tiles
* - YAPF_TILE_CORNER_LENGTH for non-diagonal tiles
* - tile penalties
* - tile slope penalty (upward slopes)
* - red signal penalty
* - level crossing penalty
* - speed-limit penalty (bridges)
* - station platform penalty
* - penalty for reversing in the depot
* - etc.
* 3. Extra cost (applies to the last node only)
* - last red signal penalty
* - penalty for too long or too short platform on the destination station
*/
int transition_cost = 0;
int extra_cost = 0;
/* Segment: one or more tiles connected by contiguous tracks of the same type.
* Each segment cost includes 'Tile cost' for all its tiles (including the first
* and last), and the 'Transition cost' between its tiles. The first transition
* cost of segment entry (move from the 'parent' node) is not included!
*/
int segment_entry_cost = 0;
int segment_cost = 0;
const Vehicle *v = Yapf().GetVehicle();
/* start at n.m_key.m_tile / n.m_key.m_td and walk to the end of segment */
TILE cur(n.m_key.m_tile, n.m_key.m_td);
/* the previous tile will be needed for transition cost calculations */
TILE prev = !has_parent ? TILE() : TILE(n.m_parent->GetLastTile(), n.m_parent->GetLastTrackdir());
EndSegmentReasonBits end_segment_reason = ESRB_NONE;
TrackFollower tf_local(v, Yapf().GetCompatibleRailTypes(), &Yapf().m_perf_ts_cost);
if (!has_parent) {
/* We will jump to the middle of the cost calculator assuming that segment cache is not used. */
assert(!is_cached_segment);
/* Skip the first transition cost calculation. */
goto no_entry_cost;
}
for (;;) {
/* Transition cost (cost of the move from previous tile) */
transition_cost = Yapf().CurveCost(prev.td, cur.td);
transition_cost += Yapf().SwitchCost(prev.tile, cur.tile, TrackdirToExitdir(prev.td));
/* First transition cost counts against segment entry cost, other transitions
* inside segment will come to segment cost (and will be cached) */
if (segment_cost == 0) {
/* We just entered the loop. First transition cost goes to segment entry cost)*/
segment_entry_cost = transition_cost;
transition_cost = 0;
/* It is the right time now to look if we can reuse the cached segment cost. */
if (is_cached_segment) {
/* Yes, we already know the segment cost. */
segment_cost = segment.m_cost;
/* We know also the reason why the segment ends. */
end_segment_reason = segment.m_end_segment_reason;
/* We will need also some information about the last signal (if it was red). */
if (segment.m_last_signal_tile != INVALID_TILE) {
assert(HasSignalOnTrackdir(segment.m_last_signal_tile, segment.m_last_signal_td));
SignalState sig_state = GetSignalStateByTrackdir(segment.m_last_signal_tile, segment.m_last_signal_td);
bool is_red = (sig_state == SIGNAL_STATE_RED);
n.flags_u.flags_s.m_last_signal_was_red = is_red;
if (is_red) {
n.m_last_red_signal_type = GetSignalType(segment.m_last_signal_tile, TrackdirToTrack(segment.m_last_signal_td));
}
}
/* No further calculation needed. */
cur = TILE(n.GetLastTile(), n.GetLastTrackdir());
break;
}
} else {
/* Other than first transition cost count as the regular segment cost. */
segment_cost += transition_cost;
}
no_entry_cost: // jump here at the beginning if the node has no parent (it is the first node)
/* All other tile costs will be calculated here. */
segment_cost += Yapf().OneTileCost(cur.tile, cur.td);
/* If we skipped some tunnel/bridge/station tiles, add their base cost */
segment_cost += YAPF_TILE_LENGTH * tf->m_tiles_skipped;
/* Slope cost. */
segment_cost += Yapf().SlopeCost(cur.tile, cur.td);
/* Reserved tiles. */
segment_cost += Yapf().ReservationCost(n, cur.tile, cur.td, tf->m_tiles_skipped);
/* Signal cost (routine can modify segment data). */
segment_cost += Yapf().SignalCost(n, cur.tile, cur.td);
end_segment_reason = segment.m_end_segment_reason;
/* Tests for 'potential target' reasons to close the segment. */
if (cur.tile == prev.tile) {
/* Penalty for reversing in a depot. */
assert(IsRailDepot(cur.tile));
segment_cost += Yapf().PfGetSettings().rail_depot_reverse_penalty;
/* We will end in this pass (depot is possible target) */
end_segment_reason |= ESRB_DEPOT;
} else if (tf->m_is_station) {
/* Station penalties. */
uint platform_length = tf->m_tiles_skipped + 1;
/* We don't know yet if the station is our target or not. Act like
* if it is pass-through station (not our destination). */
segment_cost += Yapf().PfGetSettings().rail_station_penalty * platform_length;
/* We will end in this pass (station is possible target) */
end_segment_reason |= ESRB_STATION;
} else if (cur.tile_type == MP_STATION && IsRailWaypoint(cur.tile)) {
/* Waypoint is also a good reason to finish. */
end_segment_reason |= ESRB_WAYPOINT;
} else if (TrackFollower::DoTrackMasking() && cur.tile_type == MP_RAILWAY) {
/* Searching for a safe tile? */
if (HasSignalOnTrackdir(cur.tile, cur.td) && !IsPbsSignal(GetSignalType(cur.tile, TrackdirToTrack(cur.td)))) {
end_segment_reason |= ESRB_SAFE_TILE;
}
}
/* Apply min/max speed penalties only when inside the look-ahead radius. Otherwise
* it would cause desync in MP. */
if (n.m_num_signals_passed < m_sig_look_ahead_costs.Size())
{
int min_speed = 0;
int max_speed = tf->GetSpeedLimit(&min_speed);
if (max_speed < v->max_speed) {
extra_cost += YAPF_TILE_LENGTH * (v->max_speed - max_speed) * (4 + tf->m_tiles_skipped) / v->max_speed;
}
if (min_speed > v->max_speed) {
extra_cost += YAPF_TILE_LENGTH * (min_speed - v->max_speed);
}
}
/* Finish if we already exceeded the maximum path cost (i.e. when
* searching for the nearest depot). */
if (m_max_cost > 0 && (parent_cost + segment_entry_cost + segment_cost) > m_max_cost) {
end_segment_reason |= ESRB_PATH_TOO_LONG;
}
/* Move to the next tile/trackdir. */
tf = &tf_local;
tf_local.Init(v, Yapf().GetCompatibleRailTypes(), &Yapf().m_perf_ts_cost);
if (!tf_local.Follow(cur.tile, cur.td)) {
assert(tf_local.m_err != TrackFollower::EC_NONE);
/* Can't move to the next tile (EOL?). */
if (tf_local.m_err == TrackFollower::EC_RAIL_TYPE) {
end_segment_reason |= ESRB_RAIL_TYPE;
} else {
end_segment_reason |= ESRB_DEAD_END;
}
if (TrackFollower::DoTrackMasking() && !HasOnewaySignalBlockingTrackdir(cur.tile, cur.td)) {
end_segment_reason |= ESRB_SAFE_TILE;
}
break;
}
/* Check if the next tile is not a choice. */
if (KillFirstBit(tf_local.m_new_td_bits) != TRACKDIR_BIT_NONE) {
/* More than one segment will follow. Close this one. */
end_segment_reason |= ESRB_CHOICE_FOLLOWS;
break;
}
/* Gather the next tile/trackdir/tile_type/rail_type. */
TILE next(tf_local.m_new_tile, (Trackdir)FindFirstBit2x64(tf_local.m_new_td_bits));
if (TrackFollower::DoTrackMasking() && HasPbsSignalOnTrackdir(next.tile, next.td)) {
/* Possible safe tile. */
end_segment_reason |= ESRB_SAFE_TILE;
}
/* Check the next tile for the rail type. */
if (next.rail_type != cur.rail_type) {
/* Segment must consist from the same rail_type tiles. */
end_segment_reason |= ESRB_RAIL_TYPE;
break;
}
/* Avoid infinite looping. */
if (next.tile == n.m_key.m_tile && next.td == n.m_key.m_td) {
end_segment_reason |= ESRB_INFINITE_LOOP;
break;
}
if (segment_cost > s_max_segment_cost) {
/* Potentially in the infinite loop (or only very long segment?). We should
* not force it to finish prematurely unless we are on a regular tile. */
if (IsTileType(tf->m_new_tile, MP_RAILWAY)) {
end_segment_reason |= ESRB_SEGMENT_TOO_LONG;
break;
}
}
/* Any other reason bit set? */
if (end_segment_reason != ESRB_NONE) {
break;
}
/* For the next loop set new prev and cur tile info. */
prev = cur;
cur = next;
} // for (;;)
bool target_seen = false;
if ((end_segment_reason & ESRB_POSSIBLE_TARGET) != ESRB_NONE) {
/* Depot, station or waypoint. */
if (Yapf().PfDetectDestination(cur.tile, cur.td)) {
/* Destination found. */
target_seen = true;
}
}
/* Update the segment if needed. */
if (!is_cached_segment) {
/* Write back the segment information so it can be reused the next time. */
segment.m_cost = segment_cost;
segment.m_end_segment_reason = end_segment_reason & ESRB_CACHED_MASK;
/* Save end of segment back to the node. */
n.SetLastTileTrackdir(cur.tile, cur.td);
}
/* Do we have an excuse why not to continue pathfinding in this direction? */
if (!target_seen && (end_segment_reason & ESRB_ABORT_PF_MASK) != ESRB_NONE) {
/* Reason to not continue. Stop this PF branch. */
return false;
}
/* Special costs for the case we have reached our target. */
if (target_seen) {
n.flags_u.flags_s.m_targed_seen = true;
/* Last-red and last-red-exit penalties. */
if (n.flags_u.flags_s.m_last_signal_was_red) {
if (n.m_last_red_signal_type == SIGTYPE_EXIT) {
/* last signal was red pre-signal-exit */
extra_cost += Yapf().PfGetSettings().rail_lastred_exit_penalty;
} else {
/* last signal was red, but not exit */
extra_cost += Yapf().PfGetSettings().rail_lastred_penalty;
}
}
/* Station platform-length penalty. */
if ((end_segment_reason & ESRB_STATION) != ESRB_NONE) {
const BaseStation *st = BaseStation::GetByTile(n.GetLastTile());
assert(st != NULL);
uint platform_length = st->GetPlatformLength(n.GetLastTile(), ReverseDiagDir(TrackdirToExitdir(n.GetLastTrackdir())));
/* Reduce the extra cost caused by passing-station penalty (each station receives it in the segment cost). */
extra_cost -= Yapf().PfGetSettings().rail_station_penalty * platform_length;
/* Add penalty for the inappropriate platform length. */
extra_cost += PlatformLengthPenalty(platform_length);
}
}
/* total node cost */
n.m_cost = parent_cost + segment_entry_cost + segment_cost + extra_cost;
return true;
}
FORCEINLINE bool CanUseGlobalCache(Node& n) const
{
return !m_disable_cache
&& (n.m_parent != NULL)
&& (n.m_parent->m_num_signals_passed >= m_sig_look_ahead_costs.Size());
}
FORCEINLINE void ConnectNodeToCachedData(Node& n, CachedData& ci)
{
n.m_segment = &ci;
if (n.m_segment->m_cost < 0) {
n.m_segment->m_last_tile = n.m_key.m_tile;
n.m_segment->m_last_td = n.m_key.m_td;
}
}
void DisableCache(bool disable)
{
m_disable_cache = disable;
}
};
#endif /* YAPF_COSTRAIL_HPP */

View File

@@ -0,0 +1,203 @@
/* $Id$ */
/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file yapf_destrail.hpp Determining the destination for rail vehicles. */
#ifndef YAPF_DESTRAIL_HPP
#define YAPF_DESTRAIL_HPP
class CYapfDestinationRailBase
{
protected:
RailTypes m_compatible_railtypes;
public:
void SetDestination(const Vehicle *v, bool override_rail_type = false)
{
m_compatible_railtypes = Train::From(v)->compatible_railtypes;
if (override_rail_type) m_compatible_railtypes |= GetRailTypeInfo(Train::From(v)->railtype)->compatible_railtypes;
}
bool IsCompatibleRailType(RailType rt)
{
return HasBit(m_compatible_railtypes, rt);
}
RailTypes GetCompatibleRailTypes() const
{
return m_compatible_railtypes;
}
};
template <class Types>
class CYapfDestinationAnyDepotRailT
: public CYapfDestinationRailBase
{
public:
typedef typename Types::Tpf Tpf; ///< the pathfinder class (derived from THIS class)
typedef typename Types::NodeList::Titem Node; ///< this will be our node type
typedef typename Node::Key Key; ///< key to hash tables
/** to access inherited path finder */
Tpf& Yapf()
{
return *static_cast<Tpf*>(this);
}
/** Called by YAPF to detect if node ends in the desired destination */
FORCEINLINE bool PfDetectDestination(Node& n)
{
return PfDetectDestination(n.GetLastTile(), n.GetLastTrackdir());
}
/** Called by YAPF to detect if node ends in the desired destination */
FORCEINLINE bool PfDetectDestination(TileIndex tile, Trackdir td)
{
bool bDest = IsRailDepotTile(tile);
return bDest;
}
/** Called by YAPF to calculate cost estimate. Calculates distance to the destination
* adds it to the actual cost from origin and stores the sum to the Node::m_estimate */
FORCEINLINE bool PfCalcEstimate(Node& n)
{
n.m_estimate = n.m_cost;
return true;
}
};
template <class Types>
class CYapfDestinationAnySafeTileRailT
: public CYapfDestinationRailBase
{
public:
typedef typename Types::Tpf Tpf; ///< the pathfinder class (derived from THIS class)
typedef typename Types::NodeList::Titem Node; ///< this will be our node type
typedef typename Node::Key Key; ///< key to hash tables
typedef typename Types::TrackFollower TrackFollower; ///< TrackFollower. Need to typedef for gcc 2.95
/** to access inherited path finder */
Tpf& Yapf()
{
return *static_cast<Tpf*>(this);
}
/** Called by YAPF to detect if node ends in the desired destination */
FORCEINLINE bool PfDetectDestination(Node& n)
{
return PfDetectDestination(n.GetLastTile(), n.GetLastTrackdir());
}
/** Called by YAPF to detect if node ends in the desired destination */
FORCEINLINE bool PfDetectDestination(TileIndex tile, Trackdir td)
{
return
IsSafeWaitingPosition(Train::From(Yapf().GetVehicle()), tile, td, true, !TrackFollower::Allow90degTurns()) &&
IsWaitingPositionFree(Train::From(Yapf().GetVehicle()), tile, td, !TrackFollower::Allow90degTurns());
}
/** Called by YAPF to calculate cost estimate. Calculates distance to the destination
* adds it to the actual cost from origin and stores the sum to the Node::m_estimate. */
FORCEINLINE bool PfCalcEstimate(Node& n)
{
n.m_estimate = n.m_cost;
return true;
}
};
template <class Types>
class CYapfDestinationTileOrStationRailT
: public CYapfDestinationRailBase
{
public:
typedef typename Types::Tpf Tpf; ///< the pathfinder class (derived from THIS class)
typedef typename Types::NodeList::Titem Node; ///< this will be our node type
typedef typename Node::Key Key; ///< key to hash tables
protected:
TileIndex m_destTile;
TrackdirBits m_destTrackdirs;
StationID m_dest_station_id;
/** to access inherited path finder */
Tpf& Yapf()
{
return *static_cast<Tpf*>(this);
}
public:
void SetDestination(const Vehicle *v)
{
switch (v->current_order.GetType()) {
case OT_GOTO_STATION:
case OT_GOTO_WAYPOINT:
m_destTile = CalcClosestStationTile(v->current_order.GetDestination(), v->tile);
m_dest_station_id = v->current_order.GetDestination();
m_destTrackdirs = INVALID_TRACKDIR_BIT;
break;
default:
m_destTile = v->dest_tile;
m_dest_station_id = INVALID_STATION;
m_destTrackdirs = TrackStatusToTrackdirBits(GetTileTrackStatus(v->dest_tile, TRANSPORT_RAIL, 0));
break;
}
CYapfDestinationRailBase::SetDestination(v);
}
/** Called by YAPF to detect if node ends in the desired destination */
FORCEINLINE bool PfDetectDestination(Node& n)
{
return PfDetectDestination(n.GetLastTile(), n.GetLastTrackdir());
}
/** Called by YAPF to detect if node ends in the desired destination */
FORCEINLINE bool PfDetectDestination(TileIndex tile, Trackdir td)
{
bool bDest;
if (m_dest_station_id != INVALID_STATION) {
bDest = HasStationTileRail(tile)
&& (GetStationIndex(tile) == m_dest_station_id)
&& (GetRailStationTrack(tile) == TrackdirToTrack(td));
} else {
bDest = (tile == m_destTile)
&& ((m_destTrackdirs & TrackdirToTrackdirBits(td)) != TRACKDIR_BIT_NONE);
}
return bDest;
}
/** Called by YAPF to calculate cost estimate. Calculates distance to the destination
* adds it to the actual cost from origin and stores the sum to the Node::m_estimate */
FORCEINLINE bool PfCalcEstimate(Node& n)
{
static const int dg_dir_to_x_offs[] = {-1, 0, 1, 0};
static const int dg_dir_to_y_offs[] = {0, 1, 0, -1};
if (PfDetectDestination(n)) {
n.m_estimate = n.m_cost;
return true;
}
TileIndex tile = n.GetLastTile();
DiagDirection exitdir = TrackdirToExitdir(n.GetLastTrackdir());
int x1 = 2 * TileX(tile) + dg_dir_to_x_offs[(int)exitdir];
int y1 = 2 * TileY(tile) + dg_dir_to_y_offs[(int)exitdir];
int x2 = 2 * TileX(m_destTile);
int y2 = 2 * TileY(m_destTile);
int dx = abs(x1 - x2);
int dy = abs(y1 - y2);
int dmin = min(dx, dy);
int dxy = abs(dx - dy);
int d = dmin * YAPF_TILE_CORNER_LENGTH + (dxy - 1) * (YAPF_TILE_LENGTH / 2);
n.m_estimate = n.m_cost + d;
assert(n.m_estimate >= n.m_parent->m_estimate);
return true;
}
};
#endif /* YAPF_DESTRAIL_HPP */

View File

@@ -0,0 +1,101 @@
/* $Id$ */
/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file yapf_node.hpp Node in the pathfinder's graph. */
#ifndef YAPF_NODE_HPP
#define YAPF_NODE_HPP
/** Yapf Node Key that evaluates hash from (and compares) tile & exit dir. */
struct CYapfNodeKeyExitDir {
TileIndex m_tile;
Trackdir m_td;
DiagDirection m_exitdir;
FORCEINLINE void Set(TileIndex tile, Trackdir td)
{
m_tile = tile;
m_td = td;
m_exitdir = (m_td == INVALID_TRACKDIR) ? INVALID_DIAGDIR : TrackdirToExitdir(m_td);
}
FORCEINLINE int CalcHash() const {return m_exitdir | (m_tile << 2);}
FORCEINLINE bool operator == (const CYapfNodeKeyExitDir& other) const {return (m_tile == other.m_tile) && (m_exitdir == other.m_exitdir);}
void Dump(DumpTarget &dmp) const
{
dmp.WriteTile("m_tile", m_tile);
dmp.WriteEnumT("m_td", m_td);
dmp.WriteEnumT("m_exitdir", m_exitdir);
}
};
struct CYapfNodeKeyTrackDir : public CYapfNodeKeyExitDir
{
FORCEINLINE int CalcHash() const {return m_td | (m_tile << 4);}
FORCEINLINE bool operator == (const CYapfNodeKeyTrackDir& other) const {return (m_tile == other.m_tile) && (m_td == other.m_td);}
};
/** Yapf Node base */
template <class Tkey_, class Tnode>
struct CYapfNodeT {
typedef Tkey_ Key;
typedef Tnode Node;
Tkey_ m_key;
Node *m_hash_next;
Node *m_parent;
int m_cost;
int m_estimate;
FORCEINLINE void Set(Node *parent, TileIndex tile, Trackdir td, bool is_choice)
{
m_key.Set(tile, td);
m_hash_next = NULL;
m_parent = parent;
m_cost = 0;
m_estimate = 0;
}
FORCEINLINE Node *GetHashNext() {return m_hash_next;}
FORCEINLINE void SetHashNext(Node *pNext) {m_hash_next = pNext;}
FORCEINLINE TileIndex GetTile() const {return m_key.m_tile;}
FORCEINLINE Trackdir GetTrackdir() const {return m_key.m_td;}
FORCEINLINE const Tkey_& GetKey() const {return m_key;}
FORCEINLINE int GetCost() const {return m_cost;}
FORCEINLINE int GetCostEstimate() const {return m_estimate;}
FORCEINLINE bool operator < (const Node& other) const {return m_estimate < other.m_estimate;}
void Dump(DumpTarget &dmp) const
{
dmp.WriteStructT("m_key", &m_key);
dmp.WriteStructT("m_parent", m_parent);
dmp.WriteLine("m_cost = %d", m_cost);
dmp.WriteLine("m_estimate = %d", m_estimate);
}
};
/** Yapf Node for ships */
template <class Tkey_>
struct CYapfShipNodeT
: CYapfNodeT<Tkey_, CYapfShipNodeT<Tkey_> >
{
};
/* now define two major node types (that differ by key type) */
typedef CYapfShipNodeT<CYapfNodeKeyExitDir> CYapfShipNodeExitDir;
typedef CYapfShipNodeT<CYapfNodeKeyTrackDir> CYapfShipNodeTrackDir;
/* Default NodeList types */
typedef CNodeList_HashTableT<CYapfShipNodeExitDir , 14, 16> CShipNodeListExitDir;
typedef CNodeList_HashTableT<CYapfShipNodeTrackDir, 16, 20> CShipNodeListTrackDir;
#endif /* YAPF_NODE_HPP */

View File

@@ -0,0 +1,284 @@
/* $Id$ */
/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file yapf_node_rail.hpp Node tailored for rail pathfinding. */
#ifndef YAPF_NODE_RAIL_HPP
#define YAPF_NODE_RAIL_HPP
/** key for cached segment cost for rail YAPF */
struct CYapfRailSegmentKey
{
uint32 m_value;
FORCEINLINE CYapfRailSegmentKey(const CYapfRailSegmentKey& src) : m_value(src.m_value) {}
FORCEINLINE CYapfRailSegmentKey(const CYapfNodeKeyTrackDir& node_key)
{
Set(node_key);
}
FORCEINLINE void Set(const CYapfRailSegmentKey& src)
{
m_value = src.m_value;
}
FORCEINLINE void Set(const CYapfNodeKeyTrackDir& node_key)
{
m_value = (((int)node_key.m_tile) << 4) | node_key.m_td;
}
FORCEINLINE int32 CalcHash() const
{
return m_value;
}
FORCEINLINE TileIndex GetTile() const
{
return (TileIndex)(m_value >> 4);
}
FORCEINLINE Trackdir GetTrackdir() const
{
return (Trackdir)(m_value & 0x0F);
}
FORCEINLINE bool operator == (const CYapfRailSegmentKey& other) const
{
return m_value == other.m_value;
}
void Dump(DumpTarget &dmp) const
{
dmp.WriteTile("tile", GetTile());
dmp.WriteEnumT("td", GetTrackdir());
}
};
/* Enum used in PfCalcCost() to see why was the segment closed. */
enum EndSegmentReason {
/* The following reasons can be saved into cached segment */
ESR_DEAD_END = 0, ///< track ends here
ESR_RAIL_TYPE, ///< the next tile has a different rail type than our tiles
ESR_INFINITE_LOOP, ///< infinite loop detected
ESR_SEGMENT_TOO_LONG, ///< the segment is too long (possible infinite loop)
ESR_CHOICE_FOLLOWS, ///< the next tile contains a choice (the track splits to more than one segments)
ESR_DEPOT, ///< stop in the depot (could be a target next time)
ESR_WAYPOINT, ///< waypoint encountered (could be a target next time)
ESR_STATION, ///< station encountered (could be a target next time)
ESR_SAFE_TILE, ///< safe waiting position found (could be a target)
/* The following reasons are used only internally by PfCalcCost().
* They should not be found in the cached segment. */
ESR_PATH_TOO_LONG, ///< the path is too long (searching for the nearest depot in the given radius)
ESR_FIRST_TWO_WAY_RED, ///< first signal was 2-way and it was red
ESR_LOOK_AHEAD_END, ///< we have just passed the last look-ahead signal
ESR_TARGET_REACHED, ///< we have just reached the destination
/* Special values */
ESR_NONE = 0xFF, ///< no reason to end the segment here
};
enum EndSegmentReasonBits {
ESRB_NONE = 0,
ESRB_DEAD_END = 1 << ESR_DEAD_END,
ESRB_RAIL_TYPE = 1 << ESR_RAIL_TYPE,
ESRB_INFINITE_LOOP = 1 << ESR_INFINITE_LOOP,
ESRB_SEGMENT_TOO_LONG = 1 << ESR_SEGMENT_TOO_LONG,
ESRB_CHOICE_FOLLOWS = 1 << ESR_CHOICE_FOLLOWS,
ESRB_DEPOT = 1 << ESR_DEPOT,
ESRB_WAYPOINT = 1 << ESR_WAYPOINT,
ESRB_STATION = 1 << ESR_STATION,
ESRB_SAFE_TILE = 1 << ESR_SAFE_TILE,
ESRB_PATH_TOO_LONG = 1 << ESR_PATH_TOO_LONG,
ESRB_FIRST_TWO_WAY_RED = 1 << ESR_FIRST_TWO_WAY_RED,
ESRB_LOOK_AHEAD_END = 1 << ESR_LOOK_AHEAD_END,
ESRB_TARGET_REACHED = 1 << ESR_TARGET_REACHED,
/* Additional (composite) values. */
/* What reasons mean that the target can be found and needs to be detected. */
ESRB_POSSIBLE_TARGET = ESRB_DEPOT | ESRB_WAYPOINT | ESRB_STATION | ESRB_SAFE_TILE,
/* What reasons can be stored back into cached segment. */
ESRB_CACHED_MASK = ESRB_DEAD_END | ESRB_RAIL_TYPE | ESRB_INFINITE_LOOP | ESRB_SEGMENT_TOO_LONG | ESRB_CHOICE_FOLLOWS | ESRB_DEPOT | ESRB_WAYPOINT | ESRB_STATION | ESRB_SAFE_TILE,
/* Reasons to abort pathfinding in this direction. */
ESRB_ABORT_PF_MASK = ESRB_DEAD_END | ESRB_PATH_TOO_LONG | ESRB_INFINITE_LOOP | ESRB_FIRST_TWO_WAY_RED,
};
DECLARE_ENUM_AS_BIT_SET(EndSegmentReasonBits);
inline CStrA ValueStr(EndSegmentReasonBits bits)
{
static const char * const end_segment_reason_names[] = {
"DEAD_END", "RAIL_TYPE", "INFINITE_LOOP", "SEGMENT_TOO_LONG", "CHOICE_FOLLOWS",
"DEPOT", "WAYPOINT", "STATION", "SAFE_TILE",
"PATH_TOO_LONG", "FIRST_TWO_WAY_RED", "LOOK_AHEAD_END", "TARGET_REACHED"
};
CStrA out;
out.Format("0x%04X (%s)", bits, ComposeNameT(bits, end_segment_reason_names, "UNK", ESRB_NONE, "NONE").Data());
return out.Transfer();
}
/** cached segment cost for rail YAPF */
struct CYapfRailSegment
{
typedef CYapfRailSegmentKey Key;
CYapfRailSegmentKey m_key;
TileIndex m_last_tile;
Trackdir m_last_td;
int m_cost;
TileIndex m_last_signal_tile;
Trackdir m_last_signal_td;
EndSegmentReasonBits m_end_segment_reason;
CYapfRailSegment *m_hash_next;
FORCEINLINE CYapfRailSegment(const CYapfRailSegmentKey& key)
: m_key(key)
, m_last_tile(INVALID_TILE)
, m_last_td(INVALID_TRACKDIR)
, m_cost(-1)
, m_last_signal_tile(INVALID_TILE)
, m_last_signal_td(INVALID_TRACKDIR)
, m_end_segment_reason(ESRB_NONE)
, m_hash_next(NULL)
{}
FORCEINLINE const Key& GetKey() const
{
return m_key;
}
FORCEINLINE TileIndex GetTile() const
{
return m_key.GetTile();
}
FORCEINLINE CYapfRailSegment *GetHashNext()
{
return m_hash_next;
}
FORCEINLINE void SetHashNext(CYapfRailSegment *next)
{
m_hash_next = next;
}
void Dump(DumpTarget &dmp) const
{
dmp.WriteStructT("m_key", &m_key);
dmp.WriteTile("m_last_tile", m_last_tile);
dmp.WriteEnumT("m_last_td", m_last_td);
dmp.WriteLine("m_cost = %d", m_cost);
dmp.WriteTile("m_last_signal_tile", m_last_signal_tile);
dmp.WriteEnumT("m_last_signal_td", m_last_signal_td);
dmp.WriteEnumT("m_end_segment_reason", m_end_segment_reason);
}
};
/** Yapf Node for rail YAPF */
template <class Tkey_>
struct CYapfRailNodeT
: CYapfNodeT<Tkey_, CYapfRailNodeT<Tkey_> >
{
typedef CYapfNodeT<Tkey_, CYapfRailNodeT<Tkey_> > base;
typedef CYapfRailSegment CachedData;
CYapfRailSegment *m_segment;
uint16 m_num_signals_passed;
union {
uint32 m_inherited_flags;
struct {
bool m_targed_seen : 1;
bool m_choice_seen : 1;
bool m_last_signal_was_red : 1;
} flags_s;
} flags_u;
SignalType m_last_red_signal_type;
FORCEINLINE void Set(CYapfRailNodeT *parent, TileIndex tile, Trackdir td, bool is_choice)
{
base::Set(parent, tile, td, is_choice);
m_segment = NULL;
if (parent == NULL) {
m_num_signals_passed = 0;
flags_u.m_inherited_flags = 0;
m_last_red_signal_type = SIGTYPE_NORMAL;
} else {
m_num_signals_passed = parent->m_num_signals_passed;
flags_u.m_inherited_flags = parent->flags_u.m_inherited_flags;
m_last_red_signal_type = parent->m_last_red_signal_type;
}
flags_u.flags_s.m_choice_seen |= is_choice;
}
FORCEINLINE TileIndex GetLastTile() const
{
assert(m_segment != NULL);
return m_segment->m_last_tile;
}
FORCEINLINE Trackdir GetLastTrackdir() const
{
assert(m_segment != NULL);
return m_segment->m_last_td;
}
FORCEINLINE void SetLastTileTrackdir(TileIndex tile, Trackdir td)
{
assert(m_segment != NULL);
m_segment->m_last_tile = tile;
m_segment->m_last_td = td;
}
template <class Tbase, class Tfunc, class Tpf>
bool IterateTiles(const Vehicle *v, Tpf &yapf, Tbase &obj, bool (Tfunc::*func)(TileIndex, Trackdir)) const
{
typename Tbase::TrackFollower ft(v, yapf.GetCompatibleRailTypes());
TileIndex cur = base::GetTile();
Trackdir cur_td = base::GetTrackdir();
while (cur != GetLastTile() || cur_td != GetLastTrackdir()) {
if (!((obj.*func)(cur, cur_td))) return false;
ft.Follow(cur, cur_td);
cur = ft.m_new_tile;
assert(KillFirstBit(ft.m_new_td_bits) == TRACKDIR_BIT_NONE);
cur_td = FindFirstTrackdir(ft.m_new_td_bits);
}
return (obj.*func)(cur, cur_td);
}
void Dump(DumpTarget &dmp) const
{
base::Dump(dmp);
dmp.WriteStructT("m_segment", m_segment);
dmp.WriteLine("m_num_signals_passed = %d", m_num_signals_passed);
dmp.WriteLine("m_targed_seen = %s", flags_u.flags_s.m_targed_seen ? "Yes" : "No");
dmp.WriteLine("m_choice_seen = %s", flags_u.flags_s.m_choice_seen ? "Yes" : "No");
dmp.WriteLine("m_last_signal_was_red = %s", flags_u.flags_s.m_last_signal_was_red ? "Yes" : "No");
dmp.WriteEnumT("m_last_red_signal_type", m_last_red_signal_type);
}
};
/* now define two major node types (that differ by key type) */
typedef CYapfRailNodeT<CYapfNodeKeyExitDir> CYapfRailNodeExitDir;
typedef CYapfRailNodeT<CYapfNodeKeyTrackDir> CYapfRailNodeTrackDir;
/* Default NodeList types */
typedef CNodeList_HashTableT<CYapfRailNodeExitDir , 10, 12> CRailNodeListExitDir;
typedef CNodeList_HashTableT<CYapfRailNodeTrackDir, 12, 16> CRailNodeListTrackDir;
#endif /* YAPF_NODE_RAIL_HPP */

View File

@@ -0,0 +1,41 @@
/* $Id$ */
/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file yapf_node_road.hpp Node tailored for road pathfinding. */
#ifndef YAPF_NODE_ROAD_HPP
#define YAPF_NODE_ROAD_HPP
/** Yapf Node for road YAPF */
template <class Tkey_>
struct CYapfRoadNodeT
: CYapfNodeT<Tkey_, CYapfRoadNodeT<Tkey_> >
{
typedef CYapfNodeT<Tkey_, CYapfRoadNodeT<Tkey_> > base;
TileIndex m_segment_last_tile;
Trackdir m_segment_last_td;
void Set(CYapfRoadNodeT *parent, TileIndex tile, Trackdir td, bool is_choice)
{
base::Set(parent, tile, td, is_choice);
m_segment_last_tile = tile;
m_segment_last_td = td;
}
};
/* now define two major node types (that differ by key type) */
typedef CYapfRoadNodeT<CYapfNodeKeyExitDir> CYapfRoadNodeExitDir;
typedef CYapfRoadNodeT<CYapfNodeKeyTrackDir> CYapfRoadNodeTrackDir;
/* Default NodeList types */
typedef CNodeList_HashTableT<CYapfRoadNodeExitDir , 8, 12> CRoadNodeListExitDir;
typedef CNodeList_HashTableT<CYapfRoadNodeTrackDir, 10, 14> CRoadNodeListTrackDir;
#endif /* YAPF_NODE_ROAD_HPP */

View File

@@ -0,0 +1,645 @@
/* $Id$ */
/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file yapf_rail.cpp The rail pathfinding. */
#include "../../stdafx.h"
#include "yapf.hpp"
#include "yapf_node_rail.hpp"
#include "yapf_costrail.hpp"
#include "yapf_destrail.hpp"
#include "../../functions.h"
#define DEBUG_YAPF_CACHE 0
#if DEBUG_YAPF_CACHE
template <typename Tpf> void DumpState(Tpf &pf1, Tpf &pf2)
{
DumpTarget dmp1, dmp2;
pf1.DumpBase(dmp1);
pf2.DumpBase(dmp2);
FILE *f1 = fopen("yapf1.txt", "wt");
FILE *f2 = fopen("yapf2.txt", "wt");
fwrite(dmp1.m_out.Data(), 1, dmp1.m_out.Size(), f1);
fwrite(dmp2.m_out.Data(), 1, dmp2.m_out.Size(), f2);
fclose(f1);
fclose(f2);
}
#endif
int _total_pf_time_us = 0;
template <class Types>
class CYapfReserveTrack
{
public:
typedef typename Types::Tpf Tpf; ///< the pathfinder class (derived from THIS class)
typedef typename Types::TrackFollower TrackFollower;
typedef typename Types::NodeList::Titem Node; ///< this will be our node type
protected:
/** to access inherited pathfinder */
FORCEINLINE Tpf& Yapf()
{
return *static_cast<Tpf*>(this);
}
private:
TileIndex m_res_dest; ///< The reservation target tile
Trackdir m_res_dest_td; ///< The reservation target trackdir
Node *m_res_node; ///< The reservation target node
TileIndex m_res_fail_tile; ///< The tile where the reservation failed
Trackdir m_res_fail_td; ///< The trackdir where the reservation failed
bool FindSafePositionProc(TileIndex tile, Trackdir td)
{
if (IsSafeWaitingPosition(Train::From(Yapf().GetVehicle()), tile, td, true, !TrackFollower::Allow90degTurns())) {
m_res_dest = tile;
m_res_dest_td = td;
return false; // Stop iterating segment
}
return true;
}
/** Reserve a railway platform. Tile contains the failed tile on abort. */
bool ReserveRailStationPlatform(TileIndex &tile, DiagDirection dir)
{
TileIndex start = tile;
TileIndexDiff diff = TileOffsByDiagDir(dir);
do {
if (HasStationReservation(tile)) return false;
SetRailStationReservation(tile, true);
MarkTileDirtyByTile(tile);
tile = TILE_ADD(tile, diff);
} while (IsCompatibleTrainStationTile(tile, start));
return true;
}
/** Try to reserve a single track/platform. */
bool ReserveSingleTrack(TileIndex tile, Trackdir td)
{
if (IsRailStationTile(tile)) {
if (!ReserveRailStationPlatform(tile, TrackdirToExitdir(ReverseTrackdir(td)))) {
/* Platform could not be reserved, undo. */
m_res_fail_tile = tile;
m_res_fail_td = td;
}
} else {
if (!TryReserveRailTrack(tile, TrackdirToTrack(td))) {
/* Tile couldn't be reserved, undo. */
m_res_fail_tile = tile;
m_res_fail_td = td;
return false;
}
}
return tile != m_res_dest || td != m_res_dest_td;
}
/** Unreserve a single track/platform. Stops when the previous failer is reached. */
bool UnreserveSingleTrack(TileIndex tile, Trackdir td)
{
if (IsRailStationTile(tile)) {
TileIndex start = tile;
TileIndexDiff diff = TileOffsByDiagDir(TrackdirToExitdir(ReverseTrackdir(td)));
while ((tile != m_res_fail_tile || td != m_res_fail_td) && IsCompatibleTrainStationTile(tile, start)) {
SetRailStationReservation(tile, false);
tile = TILE_ADD(tile, diff);
}
} else if (tile != m_res_fail_tile || td != m_res_fail_td) {
UnreserveRailTrack(tile, TrackdirToTrack(td));
}
return (tile != m_res_dest || td != m_res_dest_td) && (tile != m_res_fail_tile || td != m_res_fail_td);
}
public:
/** Set the target to where the reservation should be extended. */
inline void SetReservationTarget(Node *node, TileIndex tile, Trackdir td)
{
m_res_node = node;
m_res_dest = tile;
m_res_dest_td = td;
}
/** Check the node for a possible reservation target. */
inline void FindSafePositionOnNode(Node *node)
{
assert(node->m_parent != NULL);
/* We will never pass more than two signals, no need to check for a safe tile. */
if (node->m_parent->m_num_signals_passed >= 2) return;
if (!node->IterateTiles(Yapf().GetVehicle(), Yapf(), *this, &CYapfReserveTrack<Types>::FindSafePositionProc)) {
m_res_node = node;
}
}
/** Try to reserve the path till the reservation target. */
bool TryReservePath(PBSTileInfo *target)
{
m_res_fail_tile = INVALID_TILE;
if (target != NULL) {
target->tile = m_res_dest;
target->trackdir = m_res_dest_td;
target->okay = false;
}
/* Don't bother if the target is reserved. */
if (!IsWaitingPositionFree(Train::From(Yapf().GetVehicle()), m_res_dest, m_res_dest_td)) return false;
for (Node *node = m_res_node; node->m_parent != NULL; node = node->m_parent) {
node->IterateTiles(Yapf().GetVehicle(), Yapf(), *this, &CYapfReserveTrack<Types>::ReserveSingleTrack);
if (m_res_fail_tile != INVALID_TILE) {
/* Reservation failed, undo. */
Node *fail_node = m_res_node;
TileIndex stop_tile = m_res_fail_tile;
do {
/* If this is the node that failed, stop at the failed tile. */
m_res_fail_tile = fail_node == node ? stop_tile : INVALID_TILE;
fail_node->IterateTiles(Yapf().GetVehicle(), Yapf(), *this, &CYapfReserveTrack<Types>::UnreserveSingleTrack);
} while (fail_node != node && (fail_node = fail_node->m_parent) != NULL);
return false;
}
}
if (target != NULL) target->okay = true;
if (Yapf().CanUseGlobalCache(*m_res_node))
YapfNotifyTrackLayoutChange(INVALID_TILE, INVALID_TRACK);
return true;
}
};
template <class Types>
class CYapfFollowAnyDepotRailT
{
public:
typedef typename Types::Tpf Tpf; ///< the pathfinder class (derived from THIS class)
typedef typename Types::TrackFollower TrackFollower;
typedef typename Types::NodeList::Titem Node; ///< this will be our node type
typedef typename Node::Key Key; ///< key to hash tables
protected:
/** to access inherited path finder */
FORCEINLINE Tpf& Yapf()
{
return *static_cast<Tpf*>(this);
}
public:
/** Called by YAPF to move from the given node to the next tile. For each
* reachable trackdir on the new tile creates new node, initializes it
* and adds it to the open list by calling Yapf().AddNewNode(n) */
inline void PfFollowNode(Node& old_node)
{
TrackFollower F(Yapf().GetVehicle());
if (F.Follow(old_node.GetLastTile(), old_node.GetLastTrackdir())) {
Yapf().AddMultipleNodes(&old_node, F);
}
}
/** return debug report character to identify the transportation type */
FORCEINLINE char TransportTypeChar() const
{
return 't';
}
static bool stFindNearestDepotTwoWay(const Vehicle *v, TileIndex t1, Trackdir td1, TileIndex t2, Trackdir td2, int max_distance, int reverse_penalty, TileIndex *depot_tile, bool *reversed)
{
Tpf pf1;
/*
* With caching enabled it simply cannot get a reliable result when you
* have limited the distance a train may travel. This means that the
* cached result does not match uncached result in all cases and that
* causes desyncs. So disable caching when finding for a depot that is
* nearby. This only happens with automatic servicing of vehicles,
* so it will only impact performance when you do not manually set
* depot orders and you do not disable automatic servicing.
*/
if (max_distance != 0) pf1.DisableCache(true);
bool result1 = pf1.FindNearestDepotTwoWay(v, t1, td1, t2, td2, max_distance, reverse_penalty, depot_tile, reversed);
#if DEBUG_YAPF_CACHE
Tpf pf2;
TileIndex depot_tile2 = INVALID_TILE;
bool reversed2 = false;
pf2.DisableCache(true);
bool result2 = pf2.FindNearestDepotTwoWay(v, t1, td1, t2, td2, max_distance, reverse_penalty, &depot_tile2, &reversed2);
if (result1 != result2 || (result1 && (*depot_tile != depot_tile2 || *reversed != reversed2))) {
DEBUG(yapf, 0, "CACHE ERROR: FindNearestDepotTwoWay() = [%s, %s]", result1 ? "T" : "F", result2 ? "T" : "F");
DumpState(pf1, pf2);
}
#endif
return result1;
}
FORCEINLINE bool FindNearestDepotTwoWay(const Vehicle *v, TileIndex t1, Trackdir td1, TileIndex t2, Trackdir td2, int max_distance, int reverse_penalty, TileIndex *depot_tile, bool *reversed)
{
/* set origin and destination nodes */
Yapf().SetOrigin(t1, td1, t2, td2, reverse_penalty, true);
Yapf().SetDestination(v);
Yapf().SetMaxCost(YAPF_TILE_LENGTH * max_distance);
/* find the best path */
bool bFound = Yapf().FindPath(v);
if (!bFound) return false;
/* some path found
* get found depot tile */
Node *n = Yapf().GetBestNode();
*depot_tile = n->GetLastTile();
/* walk through the path back to the origin */
Node *pNode = n;
while (pNode->m_parent != NULL) {
pNode = pNode->m_parent;
}
/* if the origin node is our front vehicle tile/Trackdir then we didn't reverse
* but we can also look at the cost (== 0 -> not reversed, == reverse_penalty -> reversed) */
*reversed = (pNode->m_cost != 0);
return true;
}
};
template <class Types>
class CYapfFollowAnySafeTileRailT : public CYapfReserveTrack<Types>
{
public:
typedef typename Types::Tpf Tpf; ///< the pathfinder class (derived from THIS class)
typedef typename Types::TrackFollower TrackFollower;
typedef typename Types::NodeList::Titem Node; ///< this will be our node type
typedef typename Node::Key Key; ///< key to hash tables
protected:
/** to access inherited path finder */
FORCEINLINE Tpf& Yapf()
{
return *static_cast<Tpf*>(this);
}
public:
/** Called by YAPF to move from the given node to the next tile. For each
* reachable trackdir on the new tile creates new node, initializes it
* and adds it to the open list by calling Yapf().AddNewNode(n) */
inline void PfFollowNode(Node& old_node)
{
TrackFollower F(Yapf().GetVehicle(), Yapf().GetCompatibleRailTypes());
if (F.Follow(old_node.GetLastTile(), old_node.GetLastTrackdir()) && F.MaskReservedTracks()) {
Yapf().AddMultipleNodes(&old_node, F);
}
}
/** Return debug report character to identify the transportation type */
FORCEINLINE char TransportTypeChar() const
{
return 't';
}
static bool stFindNearestSafeTile(const Vehicle *v, TileIndex t1, Trackdir td, bool override_railtype)
{
/* Create pathfinder instance */
Tpf pf1;
#if !DEBUG_YAPF_CACHE
bool result1 = pf1.FindNearestSafeTile(v, t1, td, override_railtype, false);
#else
bool result2 = pf1.FindNearestSafeTile(v, t1, td, override_railtype, true);
Tpf pf2;
pf2.DisableCache(true);
bool result1 = pf2.FindNearestSafeTile(v, t1, td, override_railtype, false);
if (result1 != result2) {
DEBUG(yapf, 0, "CACHE ERROR: FindSafeTile() = [%s, %s]", result2 ? "T" : "F", result1 ? "T" : "F");
DumpState(pf1, pf2);
}
#endif
return result1;
}
bool FindNearestSafeTile(const Vehicle *v, TileIndex t1, Trackdir td, bool override_railtype, bool dont_reserve)
{
/* Set origin and destination. */
Yapf().SetOrigin(t1, td);
Yapf().SetDestination(v, override_railtype);
bool bFound = Yapf().FindPath(v);
if (!bFound) return false;
/* Found a destination, set as reservation target. */
Node *pNode = Yapf().GetBestNode();
this->SetReservationTarget(pNode, pNode->GetLastTile(), pNode->GetLastTrackdir());
/* Walk through the path back to the origin. */
Node *pPrev = NULL;
while (pNode->m_parent != NULL) {
pPrev = pNode;
pNode = pNode->m_parent;
this->FindSafePositionOnNode(pPrev);
}
return dont_reserve || this->TryReservePath(NULL);
}
};
template <class Types>
class CYapfFollowRailT : public CYapfReserveTrack<Types>
{
public:
typedef typename Types::Tpf Tpf; ///< the pathfinder class (derived from THIS class)
typedef typename Types::TrackFollower TrackFollower;
typedef typename Types::NodeList::Titem Node; ///< this will be our node type
typedef typename Node::Key Key; ///< key to hash tables
protected:
/** to access inherited path finder */
FORCEINLINE Tpf& Yapf()
{
return *static_cast<Tpf*>(this);
}
public:
/** Called by YAPF to move from the given node to the next tile. For each
* reachable trackdir on the new tile creates new node, initializes it
* and adds it to the open list by calling Yapf().AddNewNode(n) */
inline void PfFollowNode(Node& old_node)
{
TrackFollower F(Yapf().GetVehicle());
if (F.Follow(old_node.GetLastTile(), old_node.GetLastTrackdir())) {
Yapf().AddMultipleNodes(&old_node, F);
}
}
/** return debug report character to identify the transportation type */
FORCEINLINE char TransportTypeChar() const
{
return 't';
}
static Trackdir stChooseRailTrack(const Vehicle *v, TileIndex tile, DiagDirection enterdir, TrackBits tracks, bool *path_not_found, bool reserve_track, PBSTileInfo *target)
{
/* create pathfinder instance */
Tpf pf1;
#if !DEBUG_YAPF_CACHE
Trackdir result1 = pf1.ChooseRailTrack(v, tile, enterdir, tracks, path_not_found, reserve_track, target);
#else
Trackdir result1 = pf1.ChooseRailTrack(v, tile, enterdir, tracks, path_not_found, false, NULL);
Tpf pf2;
pf2.DisableCache(true);
Trackdir result2 = pf2.ChooseRailTrack(v, tile, enterdir, tracks, path_not_found, reserve_track, target);
if (result1 != result2) {
DEBUG(yapf, 0, "CACHE ERROR: ChooseRailTrack() = [%d, %d]", result1, result2);
DumpState(pf1, pf2);
}
#endif
return result1;
}
FORCEINLINE Trackdir ChooseRailTrack(const Vehicle *v, TileIndex tile, DiagDirection enterdir, TrackBits tracks, bool *path_not_found, bool reserve_track, PBSTileInfo *target)
{
if (target != NULL) target->tile = INVALID_TILE;
/* set origin and destination nodes */
PBSTileInfo origin = FollowTrainReservation(Train::From(v));
Yapf().SetOrigin(origin.tile, origin.trackdir, INVALID_TILE, INVALID_TRACKDIR, 1, true);
Yapf().SetDestination(v);
/* find the best path */
bool path_found = Yapf().FindPath(v);
if (path_not_found != NULL) {
/* tell controller that the path was only 'guessed'
* treat the path as found if stopped on the first two way signal(s) */
*path_not_found = !(path_found || Yapf().m_stopped_on_first_two_way_signal);
}
/* if path not found - return INVALID_TRACKDIR */
Trackdir next_trackdir = INVALID_TRACKDIR;
Node *pNode = Yapf().GetBestNode();
if (pNode != NULL) {
/* reserve till end of path */
this->SetReservationTarget(pNode, pNode->GetLastTile(), pNode->GetLastTrackdir());
/* path was found or at least suggested
* walk through the path back to the origin */
Node *pPrev = NULL;
while (pNode->m_parent != NULL) {
pPrev = pNode;
pNode = pNode->m_parent;
this->FindSafePositionOnNode(pPrev);
}
/* return trackdir from the best origin node (one of start nodes) */
Node& best_next_node = *pPrev;
next_trackdir = best_next_node.GetTrackdir();
if (reserve_track && path_found) this->TryReservePath(target);
}
return next_trackdir;
}
static bool stCheckReverseTrain(const Vehicle *v, TileIndex t1, Trackdir td1, TileIndex t2, Trackdir td2, int reverse_penalty)
{
Tpf pf1;
bool result1 = pf1.CheckReverseTrain(v, t1, td1, t2, td2, reverse_penalty);
#if DEBUG_YAPF_CACHE
Tpf pf2;
pf2.DisableCache(true);
bool result2 = pf2.CheckReverseTrain(v, t1, td1, t2, td2, reverse_penalty);
if (result1 != result2) {
DEBUG(yapf, 0, "CACHE ERROR: CheckReverseTrain() = [%s, %s]", result1 ? "T" : "F", result2 ? "T" : "F");
DumpState(pf1, pf2);
}
#endif
return result1;
}
FORCEINLINE bool CheckReverseTrain(const Vehicle *v, TileIndex t1, Trackdir td1, TileIndex t2, Trackdir td2, int reverse_penalty)
{
/* create pathfinder instance
* set origin and destination nodes */
Yapf().SetOrigin(t1, td1, t2, td2, reverse_penalty, false);
Yapf().SetDestination(v);
/* find the best path */
bool bFound = Yapf().FindPath(v);
if (!bFound) return false;
/* path was found
* walk through the path back to the origin */
Node *pNode = Yapf().GetBestNode();
while (pNode->m_parent != NULL) {
pNode = pNode->m_parent;
}
/* check if it was reversed origin */
Node& best_org_node = *pNode;
bool reversed = (best_org_node.m_cost != 0);
return reversed;
}
};
template <class Tpf_, class Ttrack_follower, class Tnode_list, template <class Types> class TdestinationT, template <class Types> class TfollowT>
struct CYapfRail_TypesT
{
typedef CYapfRail_TypesT<Tpf_, Ttrack_follower, Tnode_list, TdestinationT, TfollowT> Types;
typedef Tpf_ Tpf;
typedef Ttrack_follower TrackFollower;
typedef Tnode_list NodeList;
typedef CYapfBaseT<Types> PfBase;
typedef TfollowT<Types> PfFollow;
typedef CYapfOriginTileTwoWayT<Types> PfOrigin;
typedef TdestinationT<Types> PfDestination;
typedef CYapfSegmentCostCacheGlobalT<Types> PfCache;
typedef CYapfCostRailT<Types> PfCost;
};
struct CYapfRail1 : CYapfT<CYapfRail_TypesT<CYapfRail1 , CFollowTrackRail , CRailNodeListTrackDir, CYapfDestinationTileOrStationRailT, CYapfFollowRailT> > {};
struct CYapfRail2 : CYapfT<CYapfRail_TypesT<CYapfRail2 , CFollowTrackRailNo90, CRailNodeListTrackDir, CYapfDestinationTileOrStationRailT, CYapfFollowRailT> > {};
struct CYapfAnyDepotRail1 : CYapfT<CYapfRail_TypesT<CYapfAnyDepotRail1, CFollowTrackRail , CRailNodeListTrackDir, CYapfDestinationAnyDepotRailT , CYapfFollowAnyDepotRailT> > {};
struct CYapfAnyDepotRail2 : CYapfT<CYapfRail_TypesT<CYapfAnyDepotRail2, CFollowTrackRailNo90, CRailNodeListTrackDir, CYapfDestinationAnyDepotRailT , CYapfFollowAnyDepotRailT> > {};
struct CYapfAnySafeTileRail1 : CYapfT<CYapfRail_TypesT<CYapfAnySafeTileRail1, CFollowTrackFreeRail , CRailNodeListTrackDir, CYapfDestinationAnySafeTileRailT , CYapfFollowAnySafeTileRailT> > {};
struct CYapfAnySafeTileRail2 : CYapfT<CYapfRail_TypesT<CYapfAnySafeTileRail2, CFollowTrackFreeRailNo90, CRailNodeListTrackDir, CYapfDestinationAnySafeTileRailT , CYapfFollowAnySafeTileRailT> > {};
Trackdir YapfChooseRailTrack(const Vehicle *v, TileIndex tile, DiagDirection enterdir, TrackBits tracks, bool *path_not_found, bool reserve_track, PBSTileInfo *target)
{
/* default is YAPF type 2 */
typedef Trackdir (*PfnChooseRailTrack)(const Vehicle*, TileIndex, DiagDirection, TrackBits, bool*, bool, PBSTileInfo*);
PfnChooseRailTrack pfnChooseRailTrack = &CYapfRail1::stChooseRailTrack;
/* check if non-default YAPF type needed */
if (_settings_game.pf.forbid_90_deg) {
pfnChooseRailTrack = &CYapfRail2::stChooseRailTrack; // Trackdir, forbid 90-deg
}
Trackdir td_ret = pfnChooseRailTrack(v, tile, enterdir, tracks, path_not_found, reserve_track, target);
return td_ret;
}
bool YapfCheckReverseTrain(const Vehicle *vt)
{
const Train *v = Train::From(vt);
const Train *last_veh = v->Last();
/* get trackdirs of both ends */
Trackdir td = v->GetVehicleTrackdir();
Trackdir td_rev = ReverseTrackdir(last_veh->GetVehicleTrackdir());
/* tiles where front and back are */
TileIndex tile = v->tile;
TileIndex tile_rev = last_veh->tile;
int reverse_penalty = 0;
if (v->track == TRACK_BIT_WORMHOLE) {
/* front in tunnel / on bridge */
DiagDirection dir_into_wormhole = GetTunnelBridgeDirection(tile);
if (TrackdirToExitdir(td) == dir_into_wormhole) tile = GetOtherTunnelBridgeEnd(tile);
/* Now 'tile' is the tunnel entry/bridge ramp the train will reach when driving forward */
/* Current position of the train in the wormhole */
TileIndex cur_tile = TileVirtXY(v->x_pos, v->y_pos);
/* Add distance to drive in the wormhole as penalty for the forward path, i.e. bonus for the reverse path
* Note: Negative penalties are ok for the start tile. */
reverse_penalty -= DistanceManhattan(cur_tile, tile) * YAPF_TILE_LENGTH;
}
if (last_veh->track == TRACK_BIT_WORMHOLE) {
/* back in tunnel / on bridge */
DiagDirection dir_into_wormhole = GetTunnelBridgeDirection(tile_rev);
if (TrackdirToExitdir(td_rev) == dir_into_wormhole) tile_rev = GetOtherTunnelBridgeEnd(tile_rev);
/* Now 'tile_rev' is the tunnel entry/bridge ramp the train will reach when reversing */
/* Current position of the last wagon in the wormhole */
TileIndex cur_tile = TileVirtXY(last_veh->x_pos, last_veh->y_pos);
/* Add distance to drive in the wormhole as penalty for the revere path. */
reverse_penalty += DistanceManhattan(cur_tile, tile_rev) * YAPF_TILE_LENGTH;
}
typedef bool (*PfnCheckReverseTrain)(const Vehicle*, TileIndex, Trackdir, TileIndex, Trackdir, int);
PfnCheckReverseTrain pfnCheckReverseTrain = CYapfRail1::stCheckReverseTrain;
/* check if non-default YAPF type needed */
if (_settings_game.pf.forbid_90_deg) {
pfnCheckReverseTrain = &CYapfRail2::stCheckReverseTrain; // Trackdir, forbid 90-deg
}
/* slightly hackish: If the pathfinders finds a path, the cost of the first node is tested to distinguish between forward- and reverse-path. */
if (reverse_penalty == 0) reverse_penalty = 1;
bool reverse = pfnCheckReverseTrain(v, tile, td, tile_rev, td_rev, reverse_penalty);
return reverse;
}
bool YapfFindNearestRailDepotTwoWay(const Vehicle *v, int max_distance, int reverse_penalty, TileIndex *depot_tile, bool *reversed)
{
*depot_tile = INVALID_TILE;
*reversed = false;
const Vehicle *last_veh = v->Last();
PBSTileInfo origin = FollowTrainReservation(Train::From(v));
TileIndex last_tile = last_veh->tile;
Trackdir td_rev = ReverseTrackdir(last_veh->GetVehicleTrackdir());
typedef bool (*PfnFindNearestDepotTwoWay)(const Vehicle*, TileIndex, Trackdir, TileIndex, Trackdir, int, int, TileIndex*, bool*);
PfnFindNearestDepotTwoWay pfnFindNearestDepotTwoWay = &CYapfAnyDepotRail1::stFindNearestDepotTwoWay;
/* check if non-default YAPF type needed */
if (_settings_game.pf.forbid_90_deg) {
pfnFindNearestDepotTwoWay = &CYapfAnyDepotRail2::stFindNearestDepotTwoWay; // Trackdir, forbid 90-deg
}
bool ret = pfnFindNearestDepotTwoWay(v, origin.tile, origin.trackdir, last_tile, td_rev, max_distance, reverse_penalty, depot_tile, reversed);
return ret;
}
bool YapfRailFindNearestSafeTile(const Vehicle *v, TileIndex tile, Trackdir td, bool override_railtype)
{
typedef bool (*PfnFindNearestSafeTile)(const Vehicle*, TileIndex, Trackdir, bool);
PfnFindNearestSafeTile pfnFindNearestSafeTile = CYapfAnySafeTileRail1::stFindNearestSafeTile;
/* check if non-default YAPF type needed */
if (_settings_game.pf.forbid_90_deg) {
pfnFindNearestSafeTile = &CYapfAnySafeTileRail2::stFindNearestSafeTile;
}
return pfnFindNearestSafeTile(v, tile, td, override_railtype);
}
/** if any track changes, this counter is incremented - that will invalidate segment cost cache */
int CSegmentCostCacheBase::s_rail_change_counter = 0;
void YapfNotifyTrackLayoutChange(TileIndex tile, Track track)
{
CSegmentCostCacheBase::NotifyTrackLayoutChange(tile, track);
}

View File

@@ -0,0 +1,631 @@
/* $Id$ */
/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file yapf_road.cpp The road pathfinding. */
#include "../../stdafx.h"
#include "../../roadstop_base.h"
#include "../../cargotype.h"
#include "yapf.hpp"
#include "yapf_node_road.hpp"
template <class Types>
class CYapfCostRoadT
{
public:
typedef typename Types::Tpf Tpf; ///< pathfinder (derived from THIS class)
typedef typename Types::TrackFollower TrackFollower; ///< track follower helper
typedef typename Types::NodeList::Titem Node; ///< this will be our node type
typedef typename Node::Key Key; ///< key to hash tables
protected:
/** to access inherited path finder */
Tpf& Yapf()
{
return *static_cast<Tpf*>(this);
}
int SlopeCost(TileIndex tile, TileIndex next_tile, Trackdir trackdir)
{
/* height of the center of the current tile */
int x1 = TileX(tile) * TILE_SIZE;
int y1 = TileY(tile) * TILE_SIZE;
int z1 = GetSlopeZ(x1 + TILE_SIZE / 2, y1 + TILE_SIZE / 2);
/* height of the center of the next tile */
int x2 = TileX(next_tile) * TILE_SIZE;
int y2 = TileY(next_tile) * TILE_SIZE;
int z2 = GetSlopeZ(x2 + TILE_SIZE / 2, y2 + TILE_SIZE / 2);
if (z2 - z1 > 1) {
/* Slope up */
return Yapf().PfGetSettings().road_slope_penalty;
}
return 0;
}
/** return one tile cost */
FORCEINLINE int OneTileCost(TileIndex tile, Trackdir trackdir)
{
int cost = 0;
/* set base cost */
if (IsDiagonalTrackdir(trackdir)) {
cost += YAPF_TILE_LENGTH;
switch (GetTileType(tile)) {
case MP_ROAD:
/* Increase the cost for level crossings */
if (IsLevelCrossing(tile)) {
cost += Yapf().PfGetSettings().road_crossing_penalty;
}
break;
case MP_STATION:
if (IsDriveThroughStopTile(tile)) {
cost += Yapf().PfGetSettings().road_stop_penalty;
}
break;
default:
break;
}
} else {
/* non-diagonal trackdir */
cost = YAPF_TILE_CORNER_LENGTH + Yapf().PfGetSettings().road_curve_penalty;
}
return cost;
}
public:
/** Called by YAPF to calculate the cost from the origin to the given node.
* Calculates only the cost of given node, adds it to the parent node cost
* and stores the result into Node::m_cost member */
FORCEINLINE bool PfCalcCost(Node& n, const TrackFollower *tf)
{
int segment_cost = 0;
/* start at n.m_key.m_tile / n.m_key.m_td and walk to the end of segment */
TileIndex tile = n.m_key.m_tile;
Trackdir trackdir = n.m_key.m_td;
while (true) {
/* base tile cost depending on distance between edges */
segment_cost += Yapf().OneTileCost(tile, trackdir);
const Vehicle *v = Yapf().GetVehicle();
/* we have reached the vehicle's destination - segment should end here to avoid target skipping */
if (Yapf().PfDetectDestinationTile(tile, trackdir)) break;
/* stop if we have just entered the depot */
if (IsRoadDepotTile(tile) && trackdir == DiagDirToDiagTrackdir(ReverseDiagDir(GetRoadDepotDirection(tile)))) {
/* next time we will reverse and leave the depot */
break;
}
/* if there are no reachable trackdirs on new tile, we have end of road */
TrackFollower F(Yapf().GetVehicle());
if (!F.Follow(tile, trackdir)) break;
/* if there are more trackdirs available & reachable, we are at the end of segment */
if (KillFirstBit(F.m_new_td_bits) != TRACKDIR_BIT_NONE) break;
Trackdir new_td = (Trackdir)FindFirstBit2x64(F.m_new_td_bits);
/* stop if RV is on simple loop with no junctions */
if (F.m_new_tile == n.m_key.m_tile && new_td == n.m_key.m_td) return false;
/* if we skipped some tunnel tiles, add their cost */
segment_cost += F.m_tiles_skipped * YAPF_TILE_LENGTH;
/* add hilly terrain penalty */
segment_cost += Yapf().SlopeCost(tile, F.m_new_tile, trackdir);
/* add min/max speed penalties */
int min_speed = 0;
int max_speed = F.GetSpeedLimit(&min_speed);
if (max_speed < v->max_speed) segment_cost += 1 * (v->max_speed - max_speed);
if (min_speed > v->max_speed) segment_cost += 10 * (min_speed - v->max_speed);
/* move to the next tile */
tile = F.m_new_tile;
trackdir = new_td;
};
/* save end of segment back to the node */
n.m_segment_last_tile = tile;
n.m_segment_last_td = trackdir;
/* save also tile cost */
int parent_cost = (n.m_parent != NULL) ? n.m_parent->m_cost : 0;
n.m_cost = parent_cost + segment_cost;
return true;
}
};
template <class Types>
class CYapfDestinationAnyDepotRoadT
{
public:
typedef typename Types::Tpf Tpf; ///< the pathfinder class (derived from THIS class)
typedef typename Types::TrackFollower TrackFollower;
typedef typename Types::NodeList::Titem Node; ///< this will be our node type
typedef typename Node::Key Key; ///< key to hash tables
/** to access inherited path finder */
Tpf& Yapf()
{
return *static_cast<Tpf*>(this);
}
/** Called by YAPF to detect if node ends in the desired destination */
FORCEINLINE bool PfDetectDestination(Node& n)
{
bool bDest = IsRoadDepotTile(n.m_segment_last_tile);
return bDest;
}
FORCEINLINE bool PfDetectDestinationTile(TileIndex tile, Trackdir trackdir)
{
return IsRoadDepotTile(tile);
}
/** Called by YAPF to calculate cost estimate. Calculates distance to the destination
* adds it to the actual cost from origin and stores the sum to the Node::m_estimate */
FORCEINLINE bool PfCalcEstimate(Node& n)
{
n.m_estimate = n.m_cost;
return true;
}
};
template <class Types>
class CYapfDestinationAnyRoadVehicleCompatibleStopOfGivenStationT
{
public:
typedef typename Types::Tpf Tpf; ///< the pathfinder class (derived from THIS class)
typedef typename Types::TrackFollower TrackFollower;
typedef typename Types::NodeList::Titem Node; ///< this will be our node type
typedef typename Node::Key Key; ///< key to hash tables
TileIndex m_destTile;
StationID m_dest_station;
bool m_bus;
bool m_non_artic;
/** to access inherited path finder */
Tpf& Yapf()
{
return *static_cast<Tpf*>(this);
}
void SetDestination(const RoadVehicle *v, StationID sid, TileIndex destTile)
{
m_dest_station = sid;
m_destTile = destTile;
m_bus = IsCargoInClass(v->cargo_type, CC_PASSENGERS);
m_non_artic = !v->HasArticulatedPart();
}
/** Called by YAPF to detect if node ends in the desired destination */
FORCEINLINE bool PfDetectDestination(Node& n)
{
return PfDetectDestinationTile(n.m_segment_last_tile, INVALID_TRACKDIR);
}
FORCEINLINE bool PfDetectDestinationTile(TileIndex tile, Trackdir trackdir)
{
return
IsTileType(tile, MP_STATION) &&
GetStationIndex(tile) == m_dest_station &&
(m_bus ? IsBusStop(tile) : IsTruckStop(tile)) &&
(m_non_artic || IsDriveThroughStopTile(tile));
}
/** Called by YAPF to calculate cost estimate. Calculates distance to the destination
* adds it to the actual cost from origin and stores the sum to the Node::m_estimate */
FORCEINLINE bool PfCalcEstimate(Node& n)
{
static const int dg_dir_to_x_offs[] = {-1, 0, 1, 0};
static const int dg_dir_to_y_offs[] = {0, 1, 0, -1};
if (PfDetectDestination(n)) {
n.m_estimate = n.m_cost;
return true;
}
TileIndex tile = n.m_segment_last_tile;
DiagDirection exitdir = TrackdirToExitdir(n.m_segment_last_td);
int x1 = 2 * TileX(tile) + dg_dir_to_x_offs[(int)exitdir];
int y1 = 2 * TileY(tile) + dg_dir_to_y_offs[(int)exitdir];
int x2 = 2 * TileX(m_destTile);
int y2 = 2 * TileY(m_destTile);
int dx = abs(x1 - x2);
int dy = abs(y1 - y2);
int dmin = min(dx, dy);
int dxy = abs(dx - dy);
int d = dmin * YAPF_TILE_CORNER_LENGTH + (dxy - 1) * (YAPF_TILE_LENGTH / 2);
n.m_estimate = n.m_cost + d;
assert(n.m_estimate >= n.m_parent->m_estimate);
return true;
}
};
template <class Types>
class CYapfDestinationTileRoadT
{
public:
typedef typename Types::Tpf Tpf; ///< the pathfinder class (derived from THIS class)
typedef typename Types::TrackFollower TrackFollower;
typedef typename Types::NodeList::Titem Node; ///< this will be our node type
typedef typename Node::Key Key; ///< key to hash tables
protected:
TileIndex m_destTile;
TrackdirBits m_destTrackdirs;
public:
void SetDestination(TileIndex tile, TrackdirBits trackdirs)
{
m_destTile = tile;
m_destTrackdirs = trackdirs;
}
protected:
/** to access inherited path finder */
Tpf& Yapf()
{
return *static_cast<Tpf*>(this);
}
public:
/** Called by YAPF to detect if node ends in the desired destination */
FORCEINLINE bool PfDetectDestination(Node& n)
{
bool bDest = (n.m_segment_last_tile == m_destTile) && ((m_destTrackdirs & TrackdirToTrackdirBits(n.m_segment_last_td)) != TRACKDIR_BIT_NONE);
return bDest;
}
FORCEINLINE bool PfDetectDestinationTile(TileIndex tile, Trackdir trackdir)
{
return tile == m_destTile && ((m_destTrackdirs & TrackdirToTrackdirBits(trackdir)) != TRACKDIR_BIT_NONE);
}
/** Called by YAPF to calculate cost estimate. Calculates distance to the destination
* adds it to the actual cost from origin and stores the sum to the Node::m_estimate */
inline bool PfCalcEstimate(Node& n)
{
static const int dg_dir_to_x_offs[] = {-1, 0, 1, 0};
static const int dg_dir_to_y_offs[] = {0, 1, 0, -1};
if (PfDetectDestination(n)) {
n.m_estimate = n.m_cost;
return true;
}
TileIndex tile = n.m_segment_last_tile;
DiagDirection exitdir = TrackdirToExitdir(n.m_segment_last_td);
int x1 = 2 * TileX(tile) + dg_dir_to_x_offs[(int)exitdir];
int y1 = 2 * TileY(tile) + dg_dir_to_y_offs[(int)exitdir];
int x2 = 2 * TileX(m_destTile);
int y2 = 2 * TileY(m_destTile);
int dx = abs(x1 - x2);
int dy = abs(y1 - y2);
int dmin = min(dx, dy);
int dxy = abs(dx - dy);
int d = dmin * YAPF_TILE_CORNER_LENGTH + (dxy - 1) * (YAPF_TILE_LENGTH / 2);
n.m_estimate = n.m_cost + d;
assert(n.m_estimate >= n.m_parent->m_estimate);
return true;
}
};
template <class Types>
class CYapfFollowRoadT
{
public:
typedef typename Types::Tpf Tpf; ///< the pathfinder class (derived from THIS class)
typedef typename Types::TrackFollower TrackFollower;
typedef typename Types::NodeList::Titem Node; ///< this will be our node type
typedef typename Node::Key Key; ///< key to hash tables
protected:
/** to access inherited path finder */
FORCEINLINE Tpf& Yapf()
{
return *static_cast<Tpf*>(this);
}
public:
/** Called by YAPF to move from the given node to the next tile. For each
* reachable trackdir on the new tile creates new node, initializes it
* and adds it to the open list by calling Yapf().AddNewNode(n) */
inline void PfFollowNode(Node& old_node)
{
TrackFollower F(Yapf().GetVehicle());
if (F.Follow(old_node.m_segment_last_tile, old_node.m_segment_last_td)) {
Yapf().AddMultipleNodes(&old_node, F);
}
}
/** return debug report character to identify the transportation type */
FORCEINLINE char TransportTypeChar() const
{
return 'r';
}
static Trackdir stChooseRoadTrack(const Vehicle *v, TileIndex tile, DiagDirection enterdir)
{
Tpf pf;
return pf.ChooseRoadTrack(v, tile, enterdir);
}
FORCEINLINE Trackdir ChooseRoadTrack(const Vehicle *v, TileIndex tile, DiagDirection enterdir)
{
/* handle special case - when next tile is destination tile */
if (tile == v->dest_tile) {
/* choose diagonal trackdir reachable from enterdir */
return DiagDirToDiagTrackdir(enterdir);
}
/* our source tile will be the next vehicle tile (should be the given one) */
TileIndex src_tile = tile;
/* get available trackdirs on the start tile */
TrackdirBits src_trackdirs = TrackStatusToTrackdirBits(GetTileTrackStatus(tile, TRANSPORT_ROAD, RoadVehicle::From(v)->compatible_roadtypes));
/* select reachable trackdirs only */
src_trackdirs &= DiagdirReachesTrackdirs(enterdir);
/* get available trackdirs on the destination tile */
TileIndex dest_tile = v->dest_tile;
TrackdirBits dest_trackdirs = TrackStatusToTrackdirBits(GetTileTrackStatus(dest_tile, TRANSPORT_ROAD, RoadVehicle::From(v)->compatible_roadtypes));
/* set origin and destination nodes */
Yapf().SetOrigin(src_tile, src_trackdirs);
Yapf().SetDestination(dest_tile, dest_trackdirs);
/* find the best path */
Yapf().FindPath(v);
/* if path not found - return INVALID_TRACKDIR */
Trackdir next_trackdir = INVALID_TRACKDIR;
Node *pNode = Yapf().GetBestNode();
if (pNode != NULL) {
/* path was found or at least suggested
* walk through the path back to its origin */
while (pNode->m_parent != NULL) {
pNode = pNode->m_parent;
}
/* return trackdir from the best origin node (one of start nodes) */
Node& best_next_node = *pNode;
assert(best_next_node.GetTile() == tile);
next_trackdir = best_next_node.GetTrackdir();
}
return next_trackdir;
}
static uint stDistanceToTile(const Vehicle *v, TileIndex tile)
{
Tpf pf;
return pf.DistanceToTile(v, tile);
}
FORCEINLINE uint DistanceToTile(const Vehicle *v, TileIndex dst_tile)
{
/* handle special case - when current tile is the destination tile */
if (dst_tile == v->tile) {
/* distance is zero in this case */
return 0;
}
if (!SetOriginFromVehiclePos(v)) return UINT_MAX;
/* set destination tile, trackdir
* get available trackdirs on the destination tile */
TrackdirBits dst_td_bits = TrackStatusToTrackdirBits(GetTileTrackStatus(dst_tile, TRANSPORT_ROAD, RoadVehicle::From(v)->compatible_roadtypes));
Yapf().SetDestination(dst_tile, dst_td_bits);
/* if path not found - return distance = UINT_MAX */
uint dist = UINT_MAX;
/* find the best path */
if (!Yapf().FindPath(v)) return dist;
Node *pNode = Yapf().GetBestNode();
if (pNode != NULL) {
/* path was found
* get the path cost estimate */
dist = pNode->GetCostEstimate();
}
return dist;
}
/** Return true if the valid origin (tile/trackdir) was set from the current vehicle position. */
FORCEINLINE bool SetOriginFromVehiclePos(const Vehicle *v)
{
/* set origin (tile, trackdir) */
TileIndex src_tile = v->tile;
Trackdir src_td = v->GetVehicleTrackdir();
if ((TrackStatusToTrackdirBits(GetTileTrackStatus(src_tile, TRANSPORT_ROAD, RoadVehicle::From(v)->compatible_roadtypes)) & TrackdirToTrackdirBits(src_td)) == 0) {
/* sometimes the roadveh is not on the road (it resides on non-existing track)
* how should we handle that situation? */
return false;
}
Yapf().SetOrigin(src_tile, TrackdirToTrackdirBits(src_td));
return true;
}
static bool stFindNearestDepot(const Vehicle *v, TileIndex tile, Trackdir td, int max_distance, TileIndex *depot_tile)
{
Tpf pf;
return pf.FindNearestDepot(v, tile, td, max_distance, depot_tile);
}
FORCEINLINE bool FindNearestDepot(const Vehicle *v, TileIndex tile, Trackdir td, int max_distance, TileIndex *depot_tile)
{
/* set origin and destination nodes */
Yapf().SetOrigin(tile, TrackdirToTrackdirBits(td));
/* find the best path */
bool bFound = Yapf().FindPath(v);
if (!bFound) return false;
/* some path found
* get found depot tile */
Node *n = Yapf().GetBestNode();
if (max_distance > 0 && n->m_cost > max_distance * YAPF_TILE_LENGTH) return false;
*depot_tile = n->m_segment_last_tile;
return true;
}
static bool stFindNearestRoadVehicleCompatibleStop(const RoadVehicle *v, TileIndex tile, TileIndex destTile, Trackdir td, StationID sid, TileIndex *stop_tile)
{
Tpf pf;
return pf.FindNearestRoadVehicleCompatibleStop(v, tile, destTile, td, sid, stop_tile);
}
FORCEINLINE bool FindNearestRoadVehicleCompatibleStop(const RoadVehicle *v, TileIndex tile, TileIndex destTile, Trackdir td, StationID sid, TileIndex *stop_tile)
{
/* set origin and destination nodes */
Yapf().SetOrigin(tile, TrackdirToTrackdirBits(td));
Yapf().SetDestination(v, sid, destTile);
/* find the best path */
bool bFound = Yapf().FindPath(v);
if (!bFound) return false;
/* some path found
* get found depot tile */
const Node *n = Yapf().GetBestNode();
*stop_tile = n->m_segment_last_tile;
return true;
}
};
template <class Tpf_, class Tnode_list, template <class Types> class Tdestination>
struct CYapfRoad_TypesT
{
typedef CYapfRoad_TypesT<Tpf_, Tnode_list, Tdestination> Types;
typedef Tpf_ Tpf;
typedef CFollowTrackRoad TrackFollower;
typedef Tnode_list NodeList;
typedef CYapfBaseT<Types> PfBase;
typedef CYapfFollowRoadT<Types> PfFollow;
typedef CYapfOriginTileT<Types> PfOrigin;
typedef Tdestination<Types> PfDestination;
typedef CYapfSegmentCostCacheNoneT<Types> PfCache;
typedef CYapfCostRoadT<Types> PfCost;
};
struct CYapfRoad1 : CYapfT<CYapfRoad_TypesT<CYapfRoad1 , CRoadNodeListTrackDir, CYapfDestinationTileRoadT > > {};
struct CYapfRoad2 : CYapfT<CYapfRoad_TypesT<CYapfRoad2 , CRoadNodeListExitDir , CYapfDestinationTileRoadT > > {};
struct CYapfRoadAnyDepot1 : CYapfT<CYapfRoad_TypesT<CYapfRoadAnyDepot1, CRoadNodeListTrackDir, CYapfDestinationAnyDepotRoadT> > {};
struct CYapfRoadAnyDepot2 : CYapfT<CYapfRoad_TypesT<CYapfRoadAnyDepot2, CRoadNodeListExitDir , CYapfDestinationAnyDepotRoadT> > {};
struct CYapfRoadAnyRoadVehicleCompatibleStopOfGivenStation1 : CYapfT<CYapfRoad_TypesT<CYapfRoadAnyRoadVehicleCompatibleStopOfGivenStation1, CRoadNodeListTrackDir, CYapfDestinationAnyRoadVehicleCompatibleStopOfGivenStationT> > {};
struct CYapfRoadAnyRoadVehicleCompatibleStopOfGivenStation2 : CYapfT<CYapfRoad_TypesT<CYapfRoadAnyRoadVehicleCompatibleStopOfGivenStation2, CRoadNodeListExitDir , CYapfDestinationAnyRoadVehicleCompatibleStopOfGivenStationT> > {};
Trackdir YapfChooseRoadTrack(const Vehicle *v, TileIndex tile, DiagDirection enterdir)
{
/* default is YAPF type 2 */
typedef Trackdir (*PfnChooseRoadTrack)(const Vehicle*, TileIndex, DiagDirection);
PfnChooseRoadTrack pfnChooseRoadTrack = &CYapfRoad2::stChooseRoadTrack; // default: ExitDir, allow 90-deg
/* check if non-default YAPF type should be used */
if (_settings_game.pf.yapf.disable_node_optimization) {
pfnChooseRoadTrack = &CYapfRoad1::stChooseRoadTrack; // Trackdir, allow 90-deg
}
Trackdir td_ret = pfnChooseRoadTrack(v, tile, enterdir);
return td_ret;
}
uint YapfRoadVehDistanceToTile(const Vehicle *v, TileIndex tile)
{
/* default is YAPF type 2 */
typedef uint (*PfnDistanceToTile)(const Vehicle*, TileIndex);
PfnDistanceToTile pfnDistanceToTile = &CYapfRoad2::stDistanceToTile; // default: ExitDir, allow 90-deg
/* check if non-default YAPF type should be used */
if (_settings_game.pf.yapf.disable_node_optimization) {
pfnDistanceToTile = &CYapfRoad1::stDistanceToTile; // Trackdir, allow 90-deg
}
/* measure distance in YAPF units */
uint dist = pfnDistanceToTile(v, tile);
/* convert distance to tiles */
if (dist != UINT_MAX) {
dist = (dist + YAPF_TILE_LENGTH - 1) / YAPF_TILE_LENGTH;
}
return dist;
}
bool YapfFindNearestRoadDepot(const Vehicle *v, int max_distance, TileIndex *depot_tile)
{
*depot_tile = INVALID_TILE;
TileIndex tile = v->tile;
Trackdir trackdir = v->GetVehicleTrackdir();
if ((TrackStatusToTrackdirBits(GetTileTrackStatus(tile, TRANSPORT_ROAD, RoadVehicle::From(v)->compatible_roadtypes)) & TrackdirToTrackdirBits(trackdir)) == 0) {
return false;
}
/* handle the case when our vehicle is already in the depot tile */
if (IsRoadDepotTile(tile)) {
/* only what we need to return is the Depot* */
*depot_tile = tile;
return true;
}
/* default is YAPF type 2 */
typedef bool (*PfnFindNearestDepot)(const Vehicle*, TileIndex, Trackdir, int, TileIndex*);
PfnFindNearestDepot pfnFindNearestDepot = &CYapfRoadAnyDepot2::stFindNearestDepot;
/* check if non-default YAPF type should be used */
if (_settings_game.pf.yapf.disable_node_optimization) {
pfnFindNearestDepot = &CYapfRoadAnyDepot1::stFindNearestDepot; // Trackdir, allow 90-deg
}
bool ret = pfnFindNearestDepot(v, tile, trackdir, max_distance, depot_tile);
return ret;
}
bool YapfFindNearestRoadVehicleCompatibleStop(const RoadVehicle *v, StationID station, TileIndex *stop_tile)
{
*stop_tile = INVALID_TILE;
const RoadStop *rs = Station::Get(station)->GetPrimaryRoadStop(v);
if (rs == NULL) return false;
TileIndex tile = v->tile;
Trackdir trackdir = v->GetVehicleTrackdir();
if ((TrackStatusToTrackdirBits(GetTileTrackStatus(tile, TRANSPORT_ROAD, RoadVehicle::From(v)->compatible_roadtypes)) & TrackdirToTrackdirBits(trackdir)) == 0) {
return false;
}
/* default is YAPF type 2 */
typedef bool (*PfnFindNearestRoadVehicleCompatibleStop)(const RoadVehicle*, TileIndex, TileIndex, Trackdir, StationID, TileIndex*);
PfnFindNearestRoadVehicleCompatibleStop pfnFindNearestRoadVehicleCompatibleStop = &CYapfRoadAnyRoadVehicleCompatibleStopOfGivenStation2::stFindNearestRoadVehicleCompatibleStop;
/* check if non-default YAPF type should be used */
if (_settings_game.pf.yapf.disable_node_optimization) {
pfnFindNearestRoadVehicleCompatibleStop = &CYapfRoadAnyRoadVehicleCompatibleStopOfGivenStation1::stFindNearestRoadVehicleCompatibleStop; // Trackdir, allow 90-deg
}
bool ret = pfnFindNearestRoadVehicleCompatibleStop(v, tile, rs->xy, trackdir, station, stop_tile);
return ret;
}

View File

@@ -0,0 +1,203 @@
/* $Id$ */
/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file yapf_ship.cpp Implementation of YAPF for ships. */
#include "../../stdafx.h"
#include "yapf.hpp"
/** Node Follower module of YAPF for ships */
template <class Types>
class CYapfFollowShipT
{
public:
typedef typename Types::Tpf Tpf; ///< the pathfinder class (derived from THIS class)
typedef typename Types::TrackFollower TrackFollower;
typedef typename Types::NodeList::Titem Node; ///< this will be our node type
typedef typename Node::Key Key; ///< key to hash tables
protected:
/** to access inherited path finder */
FORCEINLINE Tpf& Yapf()
{
return *static_cast<Tpf*>(this);
}
public:
/** Called by YAPF to move from the given node to the next tile. For each
* reachable trackdir on the new tile creates new node, initializes it
* and adds it to the open list by calling Yapf().AddNewNode(n) */
inline void PfFollowNode(Node& old_node)
{
TrackFollower F(Yapf().GetVehicle());
if (F.Follow(old_node.m_key.m_tile, old_node.m_key.m_td)) {
Yapf().AddMultipleNodes(&old_node, F);
}
}
/** return debug report character to identify the transportation type */
FORCEINLINE char TransportTypeChar() const
{
return 'w';
}
static Trackdir ChooseShipTrack(const Vehicle *v, TileIndex tile, DiagDirection enterdir, TrackBits tracks)
{
/* handle special case - when next tile is destination tile */
if (tile == v->dest_tile) {
/* convert tracks to trackdirs */
TrackdirBits trackdirs = (TrackdirBits)(tracks | ((int)tracks << 8));
/* choose any trackdir reachable from enterdir */
trackdirs &= DiagdirReachesTrackdirs(enterdir);
return (Trackdir)FindFirstBit2x64(trackdirs);
}
/* move back to the old tile/trackdir (where ship is coming from) */
TileIndex src_tile = TILE_ADD(tile, TileOffsByDiagDir(ReverseDiagDir(enterdir)));
Trackdir trackdir = v->GetVehicleTrackdir();
assert(IsValidTrackdir(trackdir));
/* convert origin trackdir to TrackdirBits */
TrackdirBits trackdirs = TrackdirToTrackdirBits(trackdir);
/* get available trackdirs on the destination tile */
TrackdirBits dest_trackdirs = TrackStatusToTrackdirBits(GetTileTrackStatus(v->dest_tile, TRANSPORT_WATER, 0));
/* create pathfinder instance */
Tpf pf;
/* set origin and destination nodes */
pf.SetOrigin(src_tile, trackdirs);
pf.SetDestination(v->dest_tile, dest_trackdirs);
/* find best path */
pf.FindPath(v);
Trackdir next_trackdir = INVALID_TRACKDIR; // this would mean "path not found"
Node *pNode = pf.GetBestNode();
if (pNode != NULL) {
/* walk through the path back to the origin */
Node *pPrevNode = NULL;
while (pNode->m_parent != NULL) {
pPrevNode = pNode;
pNode = pNode->m_parent;
}
/* return trackdir from the best next node (direct child of origin) */
Node& best_next_node = *pPrevNode;
assert(best_next_node.GetTile() == tile);
next_trackdir = best_next_node.GetTrackdir();
}
return next_trackdir;
}
};
/** Cost Provider module of YAPF for ships */
template <class Types>
class CYapfCostShipT
{
public:
typedef typename Types::Tpf Tpf; ///< the pathfinder class (derived from THIS class)
typedef typename Types::TrackFollower TrackFollower;
typedef typename Types::NodeList::Titem Node; ///< this will be our node type
typedef typename Node::Key Key; ///< key to hash tables
protected:
/** to access inherited path finder */
Tpf& Yapf()
{
return *static_cast<Tpf*>(this);
}
public:
/** Called by YAPF to calculate the cost from the origin to the given node.
* Calculates only the cost of given node, adds it to the parent node cost
* and stores the result into Node::m_cost member */
FORCEINLINE bool PfCalcCost(Node& n, const TrackFollower *tf)
{
/* base tile cost depending on distance */
int c = IsDiagonalTrackdir(n.GetTrackdir()) ? YAPF_TILE_LENGTH : YAPF_TILE_CORNER_LENGTH;
/* additional penalty for curves */
if (n.m_parent != NULL && n.GetTrackdir() != NextTrackdir(n.m_parent->GetTrackdir())) {
/* new trackdir does not match the next one when going straight */
c += YAPF_TILE_LENGTH;
}
c += YAPF_TILE_LENGTH * tf->m_tiles_skipped;
/* apply it */
n.m_cost = n.m_parent->m_cost + c;
return true;
}
};
/** Config struct of YAPF for ships.
* Defines all 6 base YAPF modules as classes providing services for CYapfBaseT.
*/
template <class Tpf_, class Ttrack_follower, class Tnode_list>
struct CYapfShip_TypesT
{
/** Types - shortcut for this struct type */
typedef CYapfShip_TypesT<Tpf_, Ttrack_follower, Tnode_list> Types;
/** Tpf - pathfinder type */
typedef Tpf_ Tpf;
/** track follower helper class */
typedef Ttrack_follower TrackFollower;
/** node list type */
typedef Tnode_list NodeList;
/** pathfinder components (modules) */
typedef CYapfBaseT<Types> PfBase; // base pathfinder class
typedef CYapfFollowShipT<Types> PfFollow; // node follower
typedef CYapfOriginTileT<Types> PfOrigin; // origin provider
typedef CYapfDestinationTileT<Types> PfDestination; // destination/distance provider
typedef CYapfSegmentCostCacheNoneT<Types> PfCache; // segment cost cache provider
typedef CYapfCostShipT<Types> PfCost; // cost provider
};
/* YAPF type 1 - uses TileIndex/Trackdir as Node key, allows 90-deg turns */
struct CYapfShip1 : CYapfT<CYapfShip_TypesT<CYapfShip1, CFollowTrackWater , CShipNodeListTrackDir> > {};
/* YAPF type 2 - uses TileIndex/DiagDirection as Node key, allows 90-deg turns */
struct CYapfShip2 : CYapfT<CYapfShip_TypesT<CYapfShip2, CFollowTrackWater , CShipNodeListExitDir > > {};
/* YAPF type 3 - uses TileIndex/Trackdir as Node key, forbids 90-deg turns */
struct CYapfShip3 : CYapfT<CYapfShip_TypesT<CYapfShip3, CFollowTrackWaterNo90, CShipNodeListTrackDir> > {};
/** Ship controller helper - path finder invoker */
Trackdir YapfChooseShipTrack(const Vehicle *v, TileIndex tile, DiagDirection enterdir, TrackBits tracks)
{
/* default is YAPF type 2 */
typedef Trackdir (*PfnChooseShipTrack)(const Vehicle*, TileIndex, DiagDirection, TrackBits);
PfnChooseShipTrack pfnChooseShipTrack = CYapfShip2::ChooseShipTrack; // default: ExitDir, allow 90-deg
/* check if non-default YAPF type needed */
if (_settings_game.pf.forbid_90_deg) {
pfnChooseShipTrack = &CYapfShip3::ChooseShipTrack; // Trackdir, forbid 90-deg
} else if (_settings_game.pf.yapf.disable_node_optimization) {
pfnChooseShipTrack = &CYapfShip1::ChooseShipTrack; // Trackdir, allow 90-deg
}
Trackdir td_ret = pfnChooseShipTrack(v, tile, enterdir, tracks);
return td_ret;
}
/** performance measurement helper */
void *NpfBeginInterval()
{
CPerformanceTimer& perf = *new CPerformanceTimer;
perf.Start();
return &perf;
}
/** performance measurement helper */
int NpfEndInterval(void *vperf)
{
CPerformanceTimer& perf = *(CPerformanceTimer*)vperf;
perf.Stop();
int t = perf.Get(1000000);
delete &perf;
return t;
}