(svn r15027) -Merge: tomatos and bananas left to be, here is NoAI for all to see.

NoAI is an API (a framework) to build your own AIs in. See:
   http://wiki.openttd.org/wiki/index.php/AI:Main_Page
 With many thanks to:
  - glx and Rubidium for their syncing, feedback and hard work
  - Yexo for his feedback, patches, and AIs which tested the system very deep
  - Morloth for his feedback and patches
  - TJIP for hosting a challenge which kept NoAI on track
  - All AI authors for testing our AI API, and all other people who helped in one way or another
-Remove: all old AIs and their cheats/hacks
This commit is contained in:
truebrain
2009-01-12 17:11:45 +00:00
parent ec97e1fd0d
commit c2406cd42d
257 changed files with 34620 additions and 7576 deletions

View File

@@ -0,0 +1,12 @@
/* $Id$ */
class BinaryHeap extends AILibrary {
function GetAuthor() { return "OpenTTD NoAI Developers Team"; }
function GetName() { return "Binary Heap"; }
function GetDescription() { return "An implementation of a Binary Heap"; }
function GetVersion() { return 1; }
function GetDate() { return "2008-06-10"; }
function CreateInstance() { return "BinaryHeap"; }
}
RegisterLibrary(BinaryHeap());

View File

@@ -0,0 +1,131 @@
/* $Id$ */
/**
* Binary Heap.
* Peek and Pop always return the current lowest value in the list.
* Sort is done on insertion and on deletion.
*/
class BinaryHeap
{
_queue = null;
_count = 0;
constructor()
{
_queue = [];
}
/**
* Insert a new entry in the list.
* The complexity of this operation is O(ln n).
* @param item The item to add to the list.
* @param priority The priority this item has.
*/
function Insert(item, priority);
/**
* Pop the first entry of the list.
* This is always the item with the lowest priority.
* The complexity of this operation is O(ln n).
* @return The item of the entry with the lowest priority.
*/
function Pop();
/**
* Peek the first entry of the list.
* This is always the item with the lowest priority.
* The complexity of this operation is O(1).
* @return The item of the entry with the lowest priority.
*/
function Peek();
/**
* Get the amount of current items in the list.
* The complexity of this operation is O(1).
* @return The amount of items currently in the list.
*/
function Count();
/**
* Check if an item exists in the list.
* The complexity of this operation is O(n).
* @param item The item to check for.
* @return True if the item is already in the list.
*/
function Exists(item);
};
function BinaryHeap::Insert(item, priority)
{
/* Append dummy entry */
_queue.append(0);
_count++;
local hole;
/* Find the point of insertion */
for (hole = _count - 1; hole > 0 && priority <= _queue[hole / 2][1]; hole /= 2)
_queue[hole] = _queue[hole / 2];
/* Insert new pair */
_queue[hole] = [item, priority];
return true;
}
function BinaryHeap::Pop()
{
if (_count == 0) return null;
local node = _queue[0];
/* Remove the item from the list by putting the last value on top */
_queue[0] = _queue[_count - 1];
_queue.pop();
_count--;
/* Bubble down the last value to correct the tree again */
_BubbleDown();
return node[0];
}
function BinaryHeap::Peek()
{
if (_count == 0) return null;
return _queue[0][0];
}
function BinaryHeap::Count()
{
return _count;
}
function BinaryHeap::Exists(item)
{
/* Brute-force find the item (there is no faster way, as we don't have the priority number) */
foreach (node in _queue) {
if (node[0] == item) return true;
}
return false;
}
function BinaryHeap::_BubbleDown()
{
if (_count == 0) return;
local hole = 1;
local tmp = _queue[0];
/* Start switching parent and child until the tree is restored */
while (hole * 2 < _count + 1) {
local child = hole * 2;
if (child != _count && _queue[child][1] <= _queue[child - 1][1]) child++;
if (_queue[child - 1][1] > tmp[1]) break;
_queue[hole - 1] = _queue[child - 1];
hole = child;
}
/* The top value is now at his new place */
_queue[hole - 1] = tmp;
}

View File

@@ -0,0 +1,12 @@
/* $Id$ */
class FibonacciHeap extends AILibrary {
function GetAuthor() { return "OpenTTD NoAI Developers Team"; }
function GetName() { return "Fibonacci Heap"; }
function GetDescription() { return "An implementation of a Fibonacci Heap"; }
function GetVersion() { return 1; }
function GetDate() { return "2008-08-22"; }
function CreateInstance() { return "FibonacciHeap"; }
}
RegisterLibrary(FibonacciHeap());

View File

@@ -0,0 +1,204 @@
/* $Id$ */
/**
* Fibonacci heap.
* This heap is heavily optimized for the Insert and Pop functions.
* Peek and Pop always return the current lowest value in the list.
* Insert is implemented as a lazy insert, as it will simply add the new
* node to the root list. Sort is done on every Pop operation.
*/
class FibonacciHeap {
_min = null;
_min_index = 0;
_min_priority = 0;
_count = 0;
_root_list = null;
/**
* Create a new fibonacci heap.
* http://en.wikipedia.org/wiki/Fibonacci_heap
*/
constructor() {
_count = 0;
_min = Node();
_min.priority = 0x7FFFFFFF;
_min_index = 0;
_min_priority = 0x7FFFFFFF;
_root_list = [];
}
/**
* Insert a new entry in the heap.
* The complexity of this operation is O(1).
* @param item The item to add to the list.
* @param priority The priority this item has.
*/
function Insert(item, priority);
/**
* Pop the first entry of the list.
* This is always the item with the lowest priority.
* The complexity of this operation is O(ln n).
* @return The item of the entry with the lowest priority.
*/
function Pop();
/**
* Peek the first entry of the list.
* This is always the item with the lowest priority.
* The complexity of this operation is O(1).
* @return The item of the entry with the lowest priority.
*/
function Peek();
/**
* Get the amount of current items in the list.
* The complexity of this operation is O(1).
* @return The amount of items currently in the list.
*/
function Count();
/**
* Check if an item exists in the list.
* The complexity of this operation is O(n).
* @param item The item to check for.
* @return True if the item is already in the list.
*/
function Exists(item);
};
function FibonacciHeap::Insert(item, priority) {
/* Create a new node instance to add to the heap. */
local node = Node();
/* Changing params is faster than using constructor values */
node.item = item;
node.priority = priority;
/* Update the reference to the minimum node if this node has a
* smaller priority. */
if (_min_priority > priority) {
_min = node;
_min_index = _root_list.len();
_min_priority = priority;
}
_root_list.append(node);
_count++;
}
function FibonacciHeap::Pop() {
if (_count == 0) return null;
/* Bring variables from the class scope to this scope explicitly to
* optimize variable lookups by Squirrel. */
local z = _min;
local tmp_root_list = _root_list;
/* If there are any children, bring them all to the root level. */
tmp_root_list.extend(z.child);
/* Remove the minimum node from the rootList. */
tmp_root_list.remove(_min_index);
local root_cache = {};
/* Now we decrease the number of nodes on the root level by
* merging nodes which have the same degree. The node with
* the lowest priority value will become the parent. */
foreach(x in tmp_root_list) {
local y;
/* See if we encountered a node with the same degree already. */
while (y = root_cache.rawdelete(x.degree)) {
/* Check the priorities. */
if (x.priority > y.priority) {
local tmp = x;
x = y;
y = tmp;
}
/* Make y a child of x. */
x.child.append(y);
x.degree++;
}
root_cache[x.degree] <- x;
}
/* The root_cache contains all the nodes which will form the
* new rootList. We reset the priority to the maximum number
* for a 32 signed integer to find a new minumum. */
tmp_root_list.resize(root_cache.len());
local i = 0;
local tmp_min_priority = 0x7FFFFFFF;
/* Now we need to find the new minimum among the root nodes. */
foreach (val in root_cache) {
if (val.priority < tmp_min_priority) {
_min = val;
_min_index = i;
tmp_min_priority = val.priority;
}
tmp_root_list[i++] = val;
}
/* Update global variables. */
_min_priority = tmp_min_priority;
_count--;
return z.item;
}
function FibonacciHeap::Peek() {
if (_count == 0) return null;
return _min.item;
}
function FibonacciHeap::Count() {
return _count;
}
function FibonacciHeap::Exists(item) {
return ExistsIn(_root_list, item);
}
/**
* Auxilary function to search through the whole heap.
* @param list The list of nodes to look through.
* @param item The item to search for.
* @return True if the item is found, false otherwise.
*/
function FibonacciHeap::ExistsIn(list, item) {
foreach (val in list) {
if (val.item == item) {
return true;
}
foreach (c in val.child) {
if (ExistsIn(c, item)) {
return true;
}
}
}
/* No luck, item doesn't exists in the tree rooted under list. */
return false;
}
/**
* Basic class the fibonacci heap is composed of.
*/
class FibonacciHeap.Node {
degree = null;
child = null;
item = null;
priority = null;
constructor() {
child = [];
degree = 0;
}
};

View File

@@ -0,0 +1,12 @@
/* $Id$ */
class PriorityQueue extends AILibrary {
function GetAuthor() { return "OpenTTD NoAI Developers Team"; }
function GetName() { return "Priority Queue"; }
function GetDescription() { return "An implementation of a Priority Queue"; }
function GetVersion() { return 2; }
function GetDate() { return "2008-06-10"; }
function CreateInstance() { return "PriorityQueue"; }
}
RegisterLibrary(PriorityQueue());

View File

@@ -0,0 +1,115 @@
/* $Id$ */
/**
* Priority Queue.
* Peek and Pop always return the current lowest value in the list.
* Sort is done on insertion only.
*/
class PriorityQueue
{
_queue = null;
_count = 0;
constructor()
{
_count = 0;
_queue = [];
}
/**
* Insert a new entry in the list.
* The complexity of this operation is O(n).
* @param item The item to add to the list.
* @param priority The priority this item has.
*/
function Insert(item, priority);
/**
* Pop the first entry of the list.
* This is always the item with the lowest priority.
* The complexity of this operation is O(1).
* @return The item of the entry with the lowest priority.
*/
function Pop();
/**
* Peek the first entry of the list.
* This is always the item with the lowest priority.
* The complexity of this operation is O(1).
* @return The item of the entry with the lowest priority.
*/
function Peek();
/**
* Get the amount of current items in the list.
* The complexity of this operation is O(1).
* @return The amount of items currently in the list.
*/
function Count();
/**
* Check if an item exists in the list.
* The complexity of this operation is O(n).
* @param item The item to check for.
* @return True if the item is already in the list.
*/
function Exists(item);
};
function PriorityQueue::Insert(item, priority)
{
/* Append dummy entry */
_queue.append(0);
_count++;
local i;
/* Find the point of insertion */
for (i = _count - 2; i >= 0; i--) {
if (priority > _queue[i][1]) {
/* All items bigger move one place to the right */
_queue[i + 1] = _queue[i];
} else if (item == _queue[i][0]) {
/* Same item, ignore insertion */
return false;
} else {
/* Found place to insert at */
break;
}
}
/* Insert new pair */
_queue[i + 1] = [item, priority];
return true;
}
function PriorityQueue::Pop()
{
if (_count == 0) return null;
local node = _queue.pop();
_count--;
return node[0];
}
function PriorityQueue::Peek()
{
if (_count == 0) return null;
return _queue[_count - 1][0];
}
function PriorityQueue::Count()
{
return _count;
}
function PriorityQueue::Exists(item)
{
/* Brute-force find the item (there is no faster way, as we don't have the priority number) */
foreach (node in _queue) {
if (node[0] == item) return true;
}
return false;
}