Files
openttd/src/newgrf_airport.h
Michael Lutz 1637f6f6b0 Feature: [NewGRF] Related Act2 objects for airports and airport tiles.
Airports are similar two stations and industries, both of which have the town as related object.
Airport tiles are similar to industry tiles, which have the industry as related object.
This seems a sensible structure, so let's make it Airport Tile -> Airport -> Town.

(cherry picked from commit 1c620b349f)
2023-09-10 20:50:57 +01:00

205 lines
7.6 KiB
C++

/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file newgrf_airport.h NewGRF handling of airports. */
#ifndef NEWGRF_AIRPORT_H
#define NEWGRF_AIRPORT_H
#include "airport.h"
#include "date_type.h"
#include "newgrf_class.h"
#include "newgrf_commons.h"
#include "newgrf_spritegroup.h"
#include "newgrf_town.h"
#include "tilearea_type.h"
/** Copy from station_map.h */
typedef byte StationGfx;
/** Tile-offset / AirportTileID pair. */
struct AirportTileTable {
TileIndexDiffC ti; ///< Tile offset from the top-most airport tile.
StationGfx gfx; ///< AirportTile to use for this tile.
};
/** Iterator to iterate over all tiles belonging to an airport spec. */
class AirportTileTableIterator : public TileIterator {
private:
const AirportTileTable *att; ///< The offsets.
TileIndex base_tile; ///< The tile we base the offsets off.
public:
/**
* Construct the iterator.
* @param att The TileTable we want to iterate over.
* @param base_tile The basetile for all offsets.
*/
AirportTileTableIterator(const AirportTileTable *att, TileIndex base_tile) : TileIterator(base_tile + ToTileIndexDiff(att->ti)), att(att), base_tile(base_tile)
{
}
inline TileIterator& operator ++()
{
this->att++;
if (this->att->ti.x == -0x80) {
this->tile = INVALID_TILE;
} else {
this->tile = this->base_tile + ToTileIndexDiff(this->att->ti);
}
return *this;
}
/** Get the StationGfx for the current tile. */
StationGfx GetStationGfx() const
{
return this->att->gfx;
}
virtual std::unique_ptr<TileIterator> Clone() const
{
return std::make_unique<AirportTileTableIterator>(*this);
}
};
/** List of default airport classes. */
enum AirportClassID {
APC_BEGIN = 0, ///< Lowest valid airport class id
APC_SMALL = 0, ///< id for small airports class
APC_LARGE, ///< id for large airports class
APC_HUB, ///< id for hub airports class
APC_HELIPORT, ///< id for heliports
APC_MAX = 16, ///< maximum number of airport classes
};
/** Allow incrementing of AirportClassID variables */
DECLARE_POSTFIX_INCREMENT(AirportClassID)
/** TTDP airport types. Used to map our types to TTDPatch's */
enum TTDPAirportType {
ATP_TTDP_SMALL, ///< Same as AT_SMALL
ATP_TTDP_LARGE, ///< Same as AT_LARGE
ATP_TTDP_HELIPORT, ///< Same as AT_HELIPORT
ATP_TTDP_OILRIG, ///< Same as AT_OILRIG
};
/** A list of all hangar tiles in an airport */
struct HangarTileTable {
TileIndexDiffC ti; ///< Tile offset from the top-most airport tile.
Direction dir; ///< Direction of the exit.
byte hangar_num; ///< The hangar to which this tile belongs.
};
/**
* Defines the data structure for an airport.
*/
struct AirportSpec {
const struct AirportFTAClass *fsm; ///< the finite statemachine for the default airports
const AirportTileTable * const *table; ///< list of the tiles composing the airport
const Direction *rotation; ///< the rotation of each tiletable
byte num_table; ///< number of elements in the table
const HangarTileTable *depot_table; ///< gives the position of the depots on the airports
byte nof_depots; ///< the number of hangar tiles in this airport
byte size_x; ///< size of airport in x direction
byte size_y; ///< size of airport in y direction
byte noise_level; ///< noise that this airport generates
byte catchment; ///< catchment area of this airport
Year min_year; ///< first year the airport is available
Year max_year; ///< last year the airport is available
StringID name; ///< name of this airport
TTDPAirportType ttd_airport_type; ///< ttdpatch airport type (Small/Large/Helipad/Oilrig)
AirportClassID cls_id; ///< the class to which this airport type belongs
SpriteID preview_sprite; ///< preview sprite for this airport
uint16 maintenance_cost; ///< maintenance cost multiplier
/* Newgrf data */
bool enabled; ///< Entity still available (by default true). Newgrf can disable it, though.
struct GRFFileProps grf_prop; ///< Properties related to the grf file.
static const AirportSpec *Get(byte type);
static AirportSpec *GetWithoutOverride(byte type);
bool IsAvailable() const;
bool IsWithinMapBounds(byte table, TileIndex index) const;
static void ResetAirports();
/** Get the index of this spec. */
byte GetIndex() const
{
assert(this >= specs && this < endof(specs));
return (byte)(this - specs);
}
static const AirportSpec dummy; ///< The dummy airport.
private:
static AirportSpec specs[NUM_AIRPORTS]; ///< Specs of the airports.
};
/** Information related to airport classes. */
typedef NewGRFClass<AirportSpec, AirportClassID, APC_MAX> AirportClass;
void BindAirportSpecs();
/** Resolver for the airport scope. */
struct AirportScopeResolver : public ScopeResolver {
struct Station *st; ///< Station of the airport for which the callback is run, or \c nullptr for build gui.
byte airport_id; ///< Type of airport for which the callback is run.
byte layout; ///< Layout of the airport to build.
TileIndex tile; ///< Tile for the callback, only valid for airporttile callbacks.
/**
* Constructor of the scope resolver for an airport.
* @param ro Surrounding resolver.
* @param tile %Tile for the callback, only valid for airporttile callbacks.
* @param st %Station of the airport for which the callback is run, or \c nullptr for build gui.
* @param airport_id Type of airport for which the callback is run.
* @param layout Layout of the airport to build.
*/
AirportScopeResolver(ResolverObject &ro, TileIndex tile, Station *st, byte airport_id, byte layout)
: ScopeResolver(ro), st(st), airport_id(airport_id), layout(layout), tile(tile)
{
}
uint32 GetRandomBits() const override;
uint32 GetVariable(uint16 variable, uint32 parameter, GetVariableExtra *extra) const override;
void StorePSA(uint pos, int32 value) override;
};
/** Resolver object for airports. */
struct AirportResolverObject : public ResolverObject {
AirportScopeResolver airport_scope;
std::unique_ptr<TownScopeResolver> town_scope; ///< The town scope resolver (created on the first call).
AirportResolverObject(TileIndex tile, Station *st, byte airport_id, byte layout,
CallbackID callback = CBID_NO_CALLBACK, uint32 callback_param1 = 0, uint32 callback_param2 = 0);
TownScopeResolver *GetTown();
ScopeResolver *GetScope(VarSpriteGroupScope scope = VSG_SCOPE_SELF, VarSpriteGroupScopeOffset relative = 0) override
{
switch (scope) {
case VSG_SCOPE_SELF: return &this->airport_scope;
case VSG_SCOPE_PARENT:
{
TownScopeResolver *tsr = this->GetTown();
if (tsr != nullptr) return tsr;
FALLTHROUGH;
}
default: return ResolverObject::GetScope(scope, relative);
}
}
GrfSpecFeature GetFeature() const override;
uint32 GetDebugID() const override;
};
StringID GetAirportTextCallback(const AirportSpec *as, byte layout, uint16 callback);
#endif /* NEWGRF_AIRPORT_H */