760 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			760 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "stdafx.h"
 | |
| #include "ttd.h"
 | |
| #include "debug.h"
 | |
| #include "npf.h"
 | |
| #include "aystar.h"
 | |
| #include "macros.h"
 | |
| #include "pathfind.h"
 | |
| #include "station.h"
 | |
| #include "tile.h"
 | |
| #include "depot.h"
 | |
| 
 | |
| AyStar _train_find_station;
 | |
| AyStar _train_find_depot;
 | |
| AyStar _road_find_station;
 | |
| AyStar _road_find_depot;
 | |
| AyStar _npf_aystar;
 | |
| 
 | |
| /* Maps a trackdir to the bit that stores its status in the map arrays, in the
 | |
|  * direction along with the trackdir */
 | |
| const byte _signal_along_trackdir[14] = {
 | |
| 	0x80, 0x80, 0x80, 0x20, 0x40, 0x10, 0, 0,
 | |
| 	0x40, 0x40, 0x40, 0x10, 0x80, 0x20
 | |
| };
 | |
| 
 | |
| /* Maps a trackdir to the bit that stores its status in the map arrays, in the
 | |
|  * direction against the trackdir */
 | |
| const byte _signal_against_trackdir[14] = {
 | |
| 	0x40, 0x40, 0x40, 0x10, 0x80, 0x20, 0, 0,
 | |
| 	0x80, 0x80, 0x80, 0x20, 0x40, 0x10
 | |
| };
 | |
| 
 | |
| /* Maps a trackdir to the trackdirs that can be reached from it (ie, when
 | |
|  * entering the next tile */
 | |
| const uint16 _trackdir_reaches_trackdirs[14] = {
 | |
| 0x1009, 0x0016, 0x1009, 0x0016, 0x0520, 0x0016, 0, 0,
 | |
| 0x0520, 0x2A00, 0x2A00, 0x0520, 0x2A00, 0x1009
 | |
| };
 | |
| 
 | |
| /* Maps a trackdir to all trackdirs that make 90 deg turns with it. */
 | |
| const uint16 _trackdir_crosses_trackdirs[14] = {
 | |
| 0x0202, 0x0101, 0x3030, 0x3030, 0x0C0C, 0x0C0C, 0, 0,
 | |
| 0x0202, 0x0101, 0x3030, 0x3030, 0x0C0C, 0x0C0C
 | |
| };
 | |
| 
 | |
| /* Maps a track to all tracks that make 90 deg turns with it. */
 | |
| const byte _track_crosses_tracks[6] = {
 | |
| 	0x2, /* Track 1 -> Track 2 */
 | |
| 	0x1, /* Track 2 -> Track 1 */
 | |
| 	0x30, /* Upper -> Left | Right */
 | |
| 	0x30, /* Lower -> Left | Right */
 | |
| 	0x0C, /* Left -> Upper | Lower */
 | |
| 	0x0C, /* Right -> Upper | Lower */
 | |
| };
 | |
| 
 | |
| /* Maps a trackdir to the (4-way) direction the tile is exited when following
 | |
|  * that trackdir */
 | |
| const byte _trackdir_to_exitdir[14] = {
 | |
| 	0,1,0,1,2,1, 0,0,
 | |
| 	2,3,3,2,3,0,
 | |
| };
 | |
| 
 | |
| const byte _track_exitdir_to_trackdir[6][4] = {
 | |
| 	{0,    0xff, 8,    0xff},
 | |
| 	{0xff, 1,    0xff, 9},
 | |
| 	{2,    0xff, 0xff, 10},
 | |
| 	{0xff, 3,    11,   0xf},
 | |
| 	{0xff, 0xff, 4,    12},
 | |
| 	{13,   5,    0xff, 0xff}
 | |
| };
 | |
| 
 | |
| const byte _track_direction_to_trackdir[6][8] = {
 | |
| 	{0xff, 0,    0xff, 0xff, 0xff, 8,    0xff, 0xff},
 | |
| 	{0xff, 0xff, 0xff, 1,    0xff, 0xff, 0xff, 9},
 | |
| 	{0xff, 0xff, 2,    0xff, 0xff, 0xff, 10,   0xff},
 | |
| 	{0xff, 0xff, 3,    0xff, 0xff, 0xff, 11,   0xff},
 | |
| 	{12,   0xff, 0xff, 0xff, 4,    0xff, 0xff, 0xff},
 | |
| 	{13,   0xff, 0xff, 0xff, 5,    0xff, 0xff, 0xff}
 | |
| };
 | |
| 
 | |
| const byte _dir_to_diag_trackdir[4] = {
 | |
| 	0, 1, 8, 9,
 | |
| };
 | |
| 
 | |
| const byte _reverse_dir[4] = {
 | |
| 	2, 3, 0, 1
 | |
| };
 | |
| 
 | |
| const byte _reverse_trackdir[14] = {
 | |
| 	8, 9, 10, 11, 12, 13, 0xFF, 0xFF,
 | |
| 	0, 1, 2,  3,  4,  5
 | |
| };
 | |
| 
 | |
| /* The cost of each trackdir. A diagonal piece is the full NPF_TILE_LENGTH,
 | |
|  * the shorter piece is sqrt(2)/2*NPF_TILE_LENGTH =~ 0.7071
 | |
|  */
 | |
| #define NPF_STRAIGHT_LENGTH (uint)(NPF_TILE_LENGTH * 0.7071)
 | |
| static const uint _trackdir_length[14] = {
 | |
| NPF_TILE_LENGTH, NPF_TILE_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, 0, 0,
 | |
| NPF_TILE_LENGTH, NPF_TILE_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH
 | |
| };
 | |
| 
 | |
| uint NTPHash(uint key1, uint key2)
 | |
| {
 | |
| 	return PATHFIND_HASH_TILE(key1);
 | |
| }
 | |
| 
 | |
| int32 NPFCalcZero(AyStar* as, AyStarNode* current, OpenListNode* parent) {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Calcs the heuristic to the target station (using NPFFindStationOrTileData). After
 | |
|  * will save the heuristic into NPFFoundTargetData if it is the smallest until
 | |
|  * now. It will then also save AyStarNode.user_data[NPF_TRACKDIR_CHOICE] in
 | |
|  * best_trackdir
 | |
|  */
 | |
| int32 NPFCalcStationOrTileHeuristic(AyStar* as, AyStarNode* current, OpenListNode* parent) {
 | |
| 	NPFFindStationOrTileData* fstd = (NPFFindStationOrTileData*)as->user_target;
 | |
| 	NPFFoundTargetData* ftd = (NPFFoundTargetData*)as->user_path;
 | |
| 	TileIndex from = current->tile;
 | |
| 	TileIndex to = fstd->dest_coords;
 | |
| 	uint dist = DistanceManhattan(from, to) * NPF_TILE_LENGTH;
 | |
| 
 | |
| 	if (dist < ftd->best_bird_dist) {
 | |
| 		ftd->best_bird_dist = dist;
 | |
| 		ftd->best_trackdir = current->user_data[NPF_TRACKDIR_CHOICE];
 | |
| 	}
 | |
| 	#ifdef NPF_DEBUG
 | |
| 	debug("Calculating H for: (%d, %d). Result: %d", TileX(current->tile), TileY(current->tile), dist);
 | |
| 	#endif
 | |
| 	return dist;
 | |
| }
 | |
| 
 | |
| /* Fills AyStarNode.user_data[NPF_TRACKDIRCHOICE] with the chosen direction to
 | |
|  * get here, either getting it from the current choice or from the parent's
 | |
|  * choice */
 | |
| void NPFFillTrackdirChoice(AyStarNode* current, OpenListNode* parent)
 | |
| {
 | |
| 	if (parent->path.parent == NULL) {
 | |
| 		byte trackdir = current->direction;
 | |
| 		/* This is a first order decision, so we'd better save the
 | |
| 		 * direction we chose */
 | |
| 		current->user_data[NPF_TRACKDIR_CHOICE] = trackdir;
 | |
| 		#ifdef NPF_DEBUG
 | |
| 		debug("Saving trackdir: %#x", trackdir);
 | |
| 		#endif
 | |
| 	} else {
 | |
| 		/* We've already made the decision, so just save our parent's
 | |
| 		 * decision */
 | |
| 		current->user_data[NPF_TRACKDIR_CHOICE] = parent->path.node.user_data[NPF_TRACKDIR_CHOICE];
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| /* Will return the cost of the tunnel. If it is an entry, it will return the
 | |
|  * cost of that tile. If the tile is an exit, it will return the tunnel length
 | |
|  * including the exit tile. Requires that this is a Tunnel tile */
 | |
| uint NPFTunnelCost(AyStarNode* current) {
 | |
| 	byte exitdir = _trackdir_to_exitdir[current->direction];
 | |
| 	TileIndex tile = current->tile;
 | |
| 	if ( (uint)(_map5[tile] & 3) == _reverse_dir[exitdir]) {
 | |
| 		/* We just popped out if this tunnel, since were
 | |
| 		 * facing the tunnel exit */
 | |
| 		FindLengthOfTunnelResult flotr;
 | |
| 		flotr = FindLengthOfTunnel(tile, _reverse_dir[exitdir]);
 | |
| 		return flotr.length * NPF_TILE_LENGTH;
 | |
| 		//TODO: Penalty for tunnels?
 | |
| 	} else {
 | |
| 		/* We are entering the tunnel, the enter tile is just a
 | |
| 		 * straight track */
 | |
| 		return NPF_TILE_LENGTH;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| uint NPFSlopeCost(AyStarNode* current) {
 | |
| 	TileIndex next = current->tile + TileOffsByDir(_trackdir_to_exitdir[current->direction]);
 | |
| 	if (GetTileZ(next) > GetTileZ(current->tile)) {
 | |
| 		/* Slope up */
 | |
| 		return _patches.npf_rail_slope_penalty;
 | |
| 	}
 | |
| 	return 0;
 | |
| 	/* Should we give a bonus for slope down? Probably not, we
 | |
| 	 * could just substract that bonus from the penalty, because
 | |
| 	 * there is only one level of steepness... */
 | |
| }
 | |
| 
 | |
| void NPFMarkTile(TileIndex tile) {
 | |
| 	switch(GetTileType(tile)) {
 | |
| 		case MP_RAILWAY:
 | |
| 		case MP_STREET:
 | |
| 			/* DEBUG: mark visited tiles by mowing the grass under them
 | |
| 			 * ;-) */
 | |
| 			_map2[tile] &= ~15;
 | |
| 			MarkTileDirtyByTile(tile);
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int32 NPFWaterPathCost(AyStar* as, AyStarNode* current, OpenListNode* parent) {
 | |
| 	//TileIndex tile = current->tile;
 | |
| 	int32 cost = 0;
 | |
| 	byte trackdir = current->direction;
 | |
| 
 | |
| 	cost = _trackdir_length[trackdir]; /* Should be different for diagonal tracks */
 | |
| 
 | |
| 	/* TODO Penalties? */
 | |
| 
 | |
| 	return cost;
 | |
| }
 | |
| 
 | |
| /* Determine the cost of this node, for road tracks */
 | |
| int32 NPFRoadPathCost(AyStar* as, AyStarNode* current, OpenListNode* parent) {
 | |
| 	TileIndex tile = current->tile;
 | |
| 	int32 cost = 0;
 | |
| 	/* Determine base length */
 | |
| 	switch (GetTileType(tile)) {
 | |
| 		case MP_TUNNELBRIDGE:
 | |
| 			if ((_map5[tile] & 0xF0)==0) {
 | |
| 				cost = NPFTunnelCost(current);
 | |
| 				break;
 | |
| 			}
 | |
| 			/* Fall through if above if is false, it is a bridge
 | |
| 			 * then. We treat that as ordinary rail */
 | |
| 		case MP_STREET:
 | |
| 			cost = NPF_TILE_LENGTH;
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	/* Determine extra costs */
 | |
| 
 | |
| 	/* Check for slope */
 | |
| 	cost += NPFSlopeCost(current);
 | |
| 
 | |
| 	/* Check for turns */
 | |
| 	//TODO
 | |
| 
 | |
| 	#ifdef NPF_MARKROUTE
 | |
| 	NPFMarkTile(tile);
 | |
| 	#endif
 | |
| 	#ifdef NPF_DEBUG
 | |
| 	debug("Calculating G for: (%d, %d). Result: %d", TileX(current->tile), TileY(current->tile), cost);
 | |
| 	#endif
 | |
| 	return cost;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Determine the cost of this node, for railway tracks */
 | |
| int32 NPFRailPathCost(AyStar* as, AyStarNode* current, OpenListNode* parent) {
 | |
| 	TileIndex tile = current->tile;
 | |
| 	byte trackdir = current->direction;
 | |
| 	int32 cost = 0;
 | |
| 	/* Determine base length */
 | |
| 	switch (GetTileType(tile)) {
 | |
| 		case MP_TUNNELBRIDGE:
 | |
| 			if ((_map5[tile] & 0xF0)==0) {
 | |
| 				cost = NPFTunnelCost(current);
 | |
| 				break;
 | |
| 			}
 | |
| 			/* Fall through if above if is false, it is a bridge
 | |
| 			 * then. We treat that as ordinary rail */
 | |
| 		case MP_RAILWAY:
 | |
| 			cost = _trackdir_length[trackdir]; /* Should be different for diagonal tracks */
 | |
| 			break;
 | |
| 		case MP_STREET: /* Railway crossing */
 | |
| 			cost = NPF_TILE_LENGTH;
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	/* Determine extra costs */
 | |
| 
 | |
| 	/* Ordinary track with signals */
 | |
| 	if (IsTileType(tile, MP_RAILWAY) && (_map5[tile] & 0xC0) == 0x40) {
 | |
| 		if ((_map2[tile] & _signal_along_trackdir[trackdir]) == 0) {
 | |
| 			/* Signal facing us is red */
 | |
| 			if (!(current->user_data[NPF_NODE_FLAGS] & NPF_FLAG_SEEN_SIGNAL)) {
 | |
| 				/* Penalize the first signal we
 | |
| 				 * encounter, if it is red */
 | |
| 				cost += _patches.npf_rail_firstred_penalty;
 | |
| 			}
 | |
| 		}
 | |
| 		current->user_data[NPF_NODE_FLAGS] |= NPF_FLAG_SEEN_SIGNAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Check for slope */
 | |
| 	cost += NPFSlopeCost(current);
 | |
| 
 | |
| 	/* Check for turns */
 | |
| 	//TODO
 | |
| 
 | |
| 	/* Check for occupied track */
 | |
| 	//TODO
 | |
| 
 | |
| 	/* Check for station tiles */
 | |
| 	if (IsTileType(tile, MP_STATION)) {
 | |
| 		/* We give a station tile a penalty. Logically we would only
 | |
| 		 * want to give station tiles that are not our destination
 | |
| 		 * this penalty. This would discourage trains to drive through
 | |
| 		 * busy stations. But, we can just give any station tile a
 | |
| 		 * penalty, because every possible route will get this penalty
 | |
| 		 * exactly once, on its end tile (if it's a station) and it
 | |
| 		 * will therefore not make a difference. */
 | |
| 		cost += _patches.npf_rail_station_penalty;
 | |
| 	}
 | |
| 
 | |
| 	#ifdef NPF_MARKROUTE
 | |
| 	NPFMarkTile(tile);
 | |
| 	#endif
 | |
| 	#ifdef NPF_DEBUG
 | |
| 	debug("Calculating G for: (%d, %d). Result: %d", TileX(current->tile), TileY(current->tile), cost);
 | |
| 	#endif
 | |
| 	return cost;
 | |
| }
 | |
| 
 | |
| /* Will find any depot */
 | |
| int32 NPFFindDepot(AyStar* as, OpenListNode *current) {
 | |
| 	TileIndex tile = current->path.node.tile;
 | |
| 	if (IsTileDepotType(tile, as->user_data[NPF_TYPE]))
 | |
| 		return AYSTAR_FOUND_END_NODE;
 | |
| 	else
 | |
| 		return AYSTAR_DONE;
 | |
| }
 | |
| 
 | |
| /* Will find a station identified using the NPFFindStationOrTileData */
 | |
| int32 NPFFindStationOrTile(AyStar* as, OpenListNode *current) {
 | |
| 	/* If GetNeighbours said we could get here, we assume the station type
 | |
| 	 * is correct */
 | |
| 	NPFFindStationOrTileData* fstd = (NPFFindStationOrTileData*)as->user_target;
 | |
| 	TileIndex tile = current->path.node.tile;
 | |
| 	if (	(fstd->station_index == -1 && tile == fstd->dest_coords) || /* We've found the tile, or */
 | |
| 		(IsTileType(tile, MP_STATION) && _map2[tile] == fstd->station_index) /* the station */
 | |
| 	   )
 | |
| 			return AYSTAR_FOUND_END_NODE;
 | |
| 	else
 | |
| 		return AYSTAR_DONE;
 | |
| }
 | |
| 
 | |
| /* To be called when current contains the (shortest route to) the target node.
 | |
|  * Will fill the contents of the NPFFoundTargetData using
 | |
|  * AyStarNode[NPF_TRACKDIR_CHOICE].
 | |
|  */
 | |
| void NPFSaveTargetData(AyStar* as, OpenListNode* current) {
 | |
| 	NPFFoundTargetData* ftd = (NPFFoundTargetData*)as->user_path;
 | |
| 	ftd->best_trackdir = current->path.node.user_data[NPF_TRACKDIR_CHOICE];
 | |
| 	ftd->best_path_dist = current->g;
 | |
| 	ftd->best_bird_dist = 0;
 | |
| 	ftd->node = current->path.node;
 | |
| }
 | |
| 
 | |
| /* Will just follow the results of GetTileTrackStatus concerning where we can
 | |
|  * go and where not. Uses AyStar.user_data[NPF_TYPE] as the transport type and
 | |
|  * an argument to GetTileTrackStatus. Will skip tunnels, meaning that the
 | |
|  * entry and exit are neighbours. Will fill AyStarNode.user_data[NPF_TRACKDIR_CHOICE] with an
 | |
|  * appropriate value, and copy AyStarNode.user_data[NPF_NODE_FLAGS] from the
 | |
|  * parent */
 | |
| void NPFFollowTrack(AyStar* aystar, OpenListNode* current) {
 | |
| 	byte src_trackdir = current->path.node.direction;
 | |
| 	TileIndex src_tile = current->path.node.tile;
 | |
| 	byte src_exitdir = _trackdir_to_exitdir[src_trackdir];
 | |
| 	FindLengthOfTunnelResult flotr;
 | |
| 	TileIndex dst_tile;
 | |
| 	int i = 0;
 | |
| 	uint trackdirs, ts;
 | |
| 	TransportType type = aystar->user_data[NPF_TYPE];
 | |
| 	/* Initialize to 0, so we can jump out (return) somewhere an have no neighbours */
 | |
| 	aystar->num_neighbours = 0;
 | |
| 	#ifdef NPF_DEBUG
 | |
| 	debug("Expanding: (%d, %d, %d) [%d]", TileX(src_tile), TileY(src_tile), src_trackdir, src_tile);
 | |
| 	#endif
 | |
| 
 | |
| 	/* Find dest tile */
 | |
| 	if (IsTileType(src_tile, MP_TUNNELBRIDGE) && (_map5[src_tile] & 0xF0)==0 && (_map5[src_tile] & 3) == src_exitdir) {
 | |
| 		/* This is a tunnel. We know this tunnel is our type,
 | |
| 		 * otherwise we wouldn't have got here. It is also facing us,
 | |
| 		 * so we should skip it's body */
 | |
| 		flotr = FindLengthOfTunnel(src_tile, src_exitdir);
 | |
| 		dst_tile = flotr.tile;
 | |
| 	} else {
 | |
| 		if (IsTileDepotType(src_tile, type)){
 | |
| 			/* This is a road station or a train or road depot. We can enter and exit
 | |
| 			 * those from one side only. Trackdirs don't support that (yet), so we'll
 | |
| 			 * do this here. */
 | |
| 
 | |
| 			byte exitdir;
 | |
| 			/* Find out the exit direction first */
 | |
| 			if (IsRoadStationTile(src_tile))
 | |
| 				exitdir = GetRoadStationDir(src_tile);
 | |
| 			else /* Train or road depot. Direction is stored the same for both, in map5 */
 | |
| 				exitdir = _map5[src_tile] & 3; /* Extract the direction from the map */
 | |
| 
 | |
| 			/* Let's see if were headed the right way */
 | |
| 			if (src_trackdir != _dir_to_diag_trackdir[exitdir])
 | |
| 				/* Not going out of the station/depot through the exit, but the back. No
 | |
| 				 * neighbours then. */
 | |
| 				return;
 | |
| 		}
 | |
| 		/* This a normal tile, a bridge, a tunnel exit, etc. */
 | |
| 		dst_tile = AddTileIndexDiffCWrap(src_tile, TileIndexDiffCByDir(_trackdir_to_exitdir[src_trackdir]));
 | |
| 		if (dst_tile == INVALID_TILE) {
 | |
| 			/* We reached the border of the map */
 | |
| 			/* TODO Nicer control flow for this */
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// TODO: check correct rail type (mono, maglev, etc)
 | |
| 
 | |
| 	/* Check the owner of the tile */
 | |
| 	if (
 | |
| 		IsTileType(dst_tile, MP_RAILWAY) /* Rail tile */
 | |
| 		|| IsTileDepotType(dst_tile, TRANSPORT_ROAD) /* Road depot tile */
 | |
| 		|| IsTileType(dst_tile, MP_STATION) /* Station tile */
 | |
| 		|| IsTileDepotType(dst_tile, TRANSPORT_WATER) /* Water depot tile */
 | |
| 	) /* TODO: Crossings, tunnels and bridges are "public" now */
 | |
| 		/* The above cases are "private" tiles, we need to check the owner */
 | |
| 		if (!IsTileOwner(dst_tile, aystar->user_data[NPF_OWNER]))
 | |
| 			return;
 | |
| 
 | |
| 	/* Determine available tracks */
 | |
| 	if (type == TRANSPORT_ROAD && (IsRoadStationTile(dst_tile) || IsTileDepotType(dst_tile, TRANSPORT_ROAD))){
 | |
| 		/* Road stations and depots return 0 on GTTS, so we have to do this by hand... */
 | |
| 		byte exitdir;
 | |
| 		if (IsRoadStationTile(dst_tile))
 | |
| 			exitdir = GetRoadStationDir(dst_tile);
 | |
| 		else /* Road depot */
 | |
| 			/* Find the trackdirs that are available for a depot with this orientation. They are in both directions */
 | |
| 			exitdir = _map5[dst_tile] & 3; /* Extract the direction from the map */
 | |
| 			ts = (1 << _dir_to_diag_trackdir[exitdir])
 | |
| 			     | (1 << _dir_to_diag_trackdir[_reverse_dir[exitdir]]);
 | |
| 	} else {
 | |
| 		ts = GetTileTrackStatus(dst_tile, type);
 | |
| 	}
 | |
| 	trackdirs = ts & 0x3F3F; /* Filter out signal status and the unused bits */
 | |
| 
 | |
| 	#ifdef NPF_DEBUG
 | |
| 	debug("Next node: (%d, %d) [%d], possible trackdirs: %#x", TileX(dst_tile), TileY(dst_tile), dst_tile, trackdirs);
 | |
| 	#endif
 | |
| 	/* Select only trackdirs we can reach from our current trackdir */
 | |
| 	trackdirs &= _trackdir_reaches_trackdirs[src_trackdir];
 | |
| 	if (_patches.forbid_90_deg && (type == TRANSPORT_RAIL || type == TRANSPORT_WATER)) /* Filter out trackdirs that would make 90 deg turns for trains */
 | |
| 		trackdirs &= ~_trackdir_crosses_trackdirs[src_trackdir];
 | |
| 	#ifdef NPF_DEBUG
 | |
| 	debug("After filtering: (%d, %d), possible trackdirs: %#x", TileX(dst_tile), TileY(dst_tile), trackdirs);
 | |
| 	#endif
 | |
| 
 | |
| 	/* Enumerate possible track */
 | |
| 	while (trackdirs != 0) {
 | |
| 		byte dst_trackdir;
 | |
| 		dst_trackdir =  FindFirstBit2x64(trackdirs);
 | |
| 		trackdirs = KillFirstBit2x64(trackdirs);
 | |
| 		#ifdef NPF_DEBUG
 | |
| 		debug("Expanded into trackdir: %d, remaining trackdirs: %#x", dst_trackdir, trackdirs);
 | |
| 		#endif
 | |
| 
 | |
| 		/* Check for oneway signal against us */
 | |
| 		if (IsTileType(dst_tile, MP_RAILWAY) && (_map5[dst_tile]&0xC0) == 0x40) {
 | |
| 			// the tile has a signal
 | |
| 			byte signal_present = _map3_lo[dst_tile];
 | |
| 			if (!(signal_present & _signal_along_trackdir[dst_trackdir])) {
 | |
| 				// if one way signal not pointing towards us, stop going in this direction.
 | |
| 				if (signal_present & _signal_against_trackdir[dst_trackdir])
 | |
| 					break;
 | |
| 			}
 | |
| 		}
 | |
| 		{
 | |
| 			/* We've found ourselves a neighbour :-) */
 | |
| 			AyStarNode* neighbour = &aystar->neighbours[i];
 | |
| 			neighbour->tile = dst_tile;
 | |
| 			neighbour->direction = dst_trackdir;
 | |
| 			/* Save user data */
 | |
| 			neighbour->user_data[NPF_NODE_FLAGS] = current->path.node.user_data[NPF_NODE_FLAGS];
 | |
| 			NPFFillTrackdirChoice(neighbour, current);
 | |
| 		}
 | |
| 		i++;
 | |
| 	}
 | |
| 	aystar->num_neighbours = i;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Plan a route to the specified target (which is checked by target_proc),
 | |
|  * from start1 and if not NULL, from start2 as well. The type of transport we
 | |
|  * are checking is in type.
 | |
|  * When we are looking for one specific target (optionally multiple tiles), we
 | |
|  * should use a good heuristic to perform aystar search. When we search for
 | |
|  * multiple targets that are spread around, we should perform a breadth first
 | |
|  * search by specifiying CalcZero as our heuristic.
 | |
|  */
 | |
| NPFFoundTargetData NPFRouteInternal(AyStarNode* start1, AyStarNode* start2, NPFFindStationOrTileData* target, AyStar_EndNodeCheck target_proc, AyStar_CalculateH heuristic_proc, TransportType type, Owner owner) {
 | |
| 	int r;
 | |
| 	NPFFoundTargetData result;
 | |
| 
 | |
| 	/* Initialize procs */
 | |
| 	_npf_aystar.CalculateH = heuristic_proc;
 | |
| 	_npf_aystar.EndNodeCheck = target_proc;
 | |
| 	_npf_aystar.FoundEndNode = NPFSaveTargetData;
 | |
| 	_npf_aystar.GetNeighbours = NPFFollowTrack;
 | |
| 	if (type == TRANSPORT_RAIL)
 | |
| 		_npf_aystar.CalculateG = NPFRailPathCost;
 | |
| 	else if (type == TRANSPORT_ROAD)
 | |
| 		_npf_aystar.CalculateG = NPFRoadPathCost;
 | |
| 	else if (type == TRANSPORT_WATER)
 | |
| 		_npf_aystar.CalculateG = NPFWaterPathCost;
 | |
| 	else
 | |
| 		assert(0);
 | |
| 
 | |
| 	/* Initialize Start Node(s) */
 | |
| 	start1->user_data[NPF_TRACKDIR_CHOICE] = 0xff;
 | |
| 	start1->user_data[NPF_NODE_FLAGS] = 0;
 | |
| 	_npf_aystar.addstart(&_npf_aystar, start1);
 | |
| 	if (start2) {
 | |
| 		start2->user_data[NPF_TRACKDIR_CHOICE] = 0xff;
 | |
| 		start2->user_data[NPF_NODE_FLAGS] = NPF_FLAG_REVERSE;
 | |
| 		_npf_aystar.addstart(&_npf_aystar, start2);
 | |
| 	}
 | |
| 
 | |
| 	/* Initialize result */
 | |
| 	result.best_bird_dist = (uint)-1;
 | |
| 	result.best_path_dist = (uint)-1;
 | |
| 	result.best_trackdir = 0xff;
 | |
| 	_npf_aystar.user_path = &result;
 | |
| 
 | |
| 	/* Initialize target */
 | |
| 	_npf_aystar.user_target = target;
 | |
| 
 | |
| 	/* Initialize user_data */
 | |
| 	_npf_aystar.user_data[NPF_TYPE] = type;
 | |
| 	_npf_aystar.user_data[NPF_OWNER] = owner;
 | |
| 
 | |
| 	/* GO! */
 | |
| 	r = AyStarMain_Main(&_npf_aystar);
 | |
| 	assert(r != AYSTAR_STILL_BUSY);
 | |
| 
 | |
| 	if (result.best_bird_dist != 0) {
 | |
| 		if (target) {
 | |
| 			DEBUG(misc, 1) ("NPF: Could not find route to 0x%x from 0x%x.", target->dest_coords, start1->tile);
 | |
| 		} else {
 | |
| 			/* Assumption: target == NULL, so we are looking for a depot */
 | |
| 			DEBUG(misc, 1) ("NPF: Could not find route to a depot from 0x%x.", start1->tile);
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| NPFFoundTargetData NPFRouteToStationOrTileTwoWay(TileIndex tile1, byte trackdir1, TileIndex tile2, byte trackdir2, NPFFindStationOrTileData* target, TransportType type, Owner owner) {
 | |
| 	AyStarNode start1;
 | |
| 	AyStarNode start2;
 | |
| 
 | |
| 	start1.tile = tile1;
 | |
| 	start2.tile = tile2;
 | |
| 	start1.direction = trackdir1;
 | |
| 	start2.direction = trackdir2;
 | |
| 
 | |
| 	return NPFRouteInternal(&start1, &start2, target, NPFFindStationOrTile, NPFCalcStationOrTileHeuristic, type, owner);
 | |
| }
 | |
| 
 | |
| NPFFoundTargetData NPFRouteToStationOrTile(TileIndex tile, byte trackdir, NPFFindStationOrTileData* target, TransportType type, Owner owner) {
 | |
| 	AyStarNode start;
 | |
| 
 | |
| 	assert(tile != 0);
 | |
| 
 | |
| 	start.tile = tile;
 | |
| 	start.direction = trackdir;
 | |
| 	/* We set this in case the target is also the start tile, we will just
 | |
| 	 * return a not found then */
 | |
| 	start.user_data[NPF_TRACKDIR_CHOICE] = 0xff;
 | |
| 
 | |
| 	return NPFRouteInternal(&start, NULL, target, NPFFindStationOrTile, NPFCalcStationOrTileHeuristic, type, owner);
 | |
| }
 | |
| 
 | |
| NPFFoundTargetData NPFRouteToDepotBreadthFirst(TileIndex tile, byte trackdir, TransportType type, Owner owner) {
 | |
| 	AyStarNode start;
 | |
| 
 | |
| 	start.tile = tile;
 | |
| 	start.direction = trackdir;
 | |
| 	/* We set this in case the target is also the start tile, we will just
 | |
| 	 * return a not found then */
 | |
| 	start.user_data[NPF_TRACKDIR_CHOICE] = 0xff;
 | |
| 
 | |
| 	/* perform a breadth first search. Target is NULL,
 | |
| 	 * since we are just looking for any depot...*/
 | |
| 	return NPFRouteInternal(&start, NULL, NULL, NPFFindDepot, NPFCalcZero, type, owner);
 | |
| }
 | |
| 
 | |
| NPFFoundTargetData NPFRouteToDepotTrialError(TileIndex tile, byte trackdir, TransportType type, Owner owner) {
 | |
| 	/* Okay, what we're gonna do. First, we look at all depots, calculate
 | |
| 	 * the manhatten distance to get to each depot. We then sort them by
 | |
| 	 * distance. We start by trying to plan a route to the closest, then
 | |
| 	 * the next closest, etc. We stop when the best route we have found so
 | |
| 	 * far, is shorter than the manhattan distance. This will obviously
 | |
| 	 * always find the closest depot. It will probably be most efficient
 | |
| 	 * for ships, since the heuristic will not be to far off then. I hope.
 | |
| 	 */
 | |
| 	Queue depots;
 | |
| 	int r;
 | |
| 	NPFFoundTargetData best_result;
 | |
| 	NPFFoundTargetData result;
 | |
| 	NPFFindStationOrTileData target;
 | |
| 	AyStarNode start;
 | |
| 	Depot* current;
 | |
| 	Depot *depot;
 | |
| 
 | |
| 	init_InsSort(&depots);
 | |
| 	/* Okay, let's find all depots that we can use first */
 | |
| 	FOR_ALL_DEPOTS(depot) {
 | |
| 		/* Check if this is really a valid depot, it is of the needed type and
 | |
| 		 * owner */
 | |
| 		if (IsValidDepot(depot) && IsTileDepotType(depot->xy, type) && IsTileOwner(depot->xy, owner))
 | |
| 			/* If so, let's add it to the queue, sorted by distance */
 | |
| 			depots.push(&depots, depot, DistanceManhattan(tile, depot->xy));
 | |
| 	}
 | |
| 
 | |
| 	/* Now, let's initialise the aystar */
 | |
| 
 | |
| 	/* Initialize procs */
 | |
| 	_npf_aystar.CalculateH = NPFCalcStationOrTileHeuristic;
 | |
| 	_npf_aystar.EndNodeCheck = NPFFindStationOrTile;
 | |
| 	_npf_aystar.FoundEndNode = NPFSaveTargetData;
 | |
| 	_npf_aystar.GetNeighbours = NPFFollowTrack;
 | |
| 	if (type == TRANSPORT_RAIL)
 | |
| 		_npf_aystar.CalculateG = NPFRailPathCost;
 | |
| 	else if (type == TRANSPORT_ROAD)
 | |
| 		_npf_aystar.CalculateG = NPFRoadPathCost;
 | |
| 	else if (type == TRANSPORT_WATER)
 | |
| 		_npf_aystar.CalculateG = NPFWaterPathCost;
 | |
| 	else
 | |
| 		assert(0);
 | |
| 
 | |
| 	/* Initialize target */
 | |
| 	target.station_index = -1; /* We will initialize dest_coords inside the loop below */
 | |
| 	_npf_aystar.user_target = ⌖
 | |
| 
 | |
| 	/* Initialize user_data */
 | |
| 	_npf_aystar.user_data[NPF_TYPE] = type;
 | |
| 	_npf_aystar.user_data[NPF_OWNER] = owner;
 | |
| 
 | |
| 	/* Initialize Start Node */
 | |
| 	start.tile = tile;
 | |
| 	start.direction = trackdir; /* We will initialize user_data inside the loop below */
 | |
| 
 | |
| 	/* Initialize Result */
 | |
| 	_npf_aystar.user_path = &result;
 | |
| 	best_result.best_path_dist = (uint)-1;
 | |
| 	best_result.best_bird_dist = (uint)-1;
 | |
| 
 | |
| 	/* Just iterate the depots in order of increasing distance */
 | |
| 	while ((current = depots.pop(&depots))) {
 | |
| 		/* Check to see if we already have a path shorter than this
 | |
| 		 * depot's manhattan distance. HACK: We call DistanceManhattan
 | |
| 		 * again, we should probably modify the queue to give us that
 | |
| 		 * value... */
 | |
| 		if ( DistanceManhattan(tile, current->xy * NPF_TILE_LENGTH) > best_result.best_path_dist)
 | |
| 			break;
 | |
| 
 | |
| 		/* Initialize Start Node */
 | |
| 		/* We set this in case the target is also the start tile, we will just
 | |
| 		 * return a not found then */
 | |
| 		start.user_data[NPF_TRACKDIR_CHOICE] = 0xff;
 | |
| 		start.user_data[NPF_NODE_FLAGS] = 0;
 | |
| 		_npf_aystar.addstart(&_npf_aystar, &start);
 | |
| 
 | |
| 		/* Initialize result */
 | |
| 		result.best_bird_dist = (uint)-1;
 | |
| 		result.best_path_dist = (uint)-1;
 | |
| 		result.best_trackdir = 0xff;
 | |
| 
 | |
| 		/* Initialize target */
 | |
| 		target.dest_coords = current->xy;
 | |
| 
 | |
| 		/* GO! */
 | |
| 		r = AyStarMain_Main(&_npf_aystar);
 | |
| 		assert(r != AYSTAR_STILL_BUSY);
 | |
| 
 | |
| 		/* This depot is closer */
 | |
| 		if (result.best_path_dist < best_result.best_path_dist)
 | |
| 			best_result = result;
 | |
| 	}
 | |
| 	if (result.best_bird_dist != 0) {
 | |
| 		DEBUG(misc, 1) ("NPF: Could not find route to any depot from 0x%x.", tile);
 | |
| 	}
 | |
| 	return best_result;
 | |
| }
 | |
| 
 | |
| void InitializeNPF(void)
 | |
| {
 | |
| 		init_AyStar(&_npf_aystar, NTPHash, 1024);
 | |
| 		_npf_aystar.loops_per_tick = 0;
 | |
| 		_npf_aystar.max_path_cost = 0;
 | |
| 		_npf_aystar.max_search_nodes = 0;
 | |
| 		/*
 | |
| 		init_AyStar(&_train_find_station, NTPHash, 1024);
 | |
| 		init_AyStar(&_train_find_depot, NTPHash, 1024);
 | |
| 		init_AyStar(&_road_find_station, NTPHash, 1024);
 | |
| 		init_AyStar(&_road_find_depot, NTPHash, 1024);
 | |
| 
 | |
| 		_train_find_station.loops_per_tick = 0;
 | |
| 		_train_find_depot.loops_per_tick = 0;
 | |
| 		_road_find_station.loops_per_tick = 0;
 | |
| 		_road_find_depot.loops_per_tick = 0;
 | |
| 
 | |
| 		_train_find_station.max_path_cost = 0;
 | |
| 		_train_find_depot.max_path_cost = 0;
 | |
| 		_road_find_station.max_path_cost = 0;
 | |
| 		_road_find_depot.max_path_cost = 0;
 | |
| 
 | |
| 		_train_find_station.max_search_nodes = 0;
 | |
| 		_train_find_depot.max_search_nodes = 0;
 | |
| 		_road_find_station.max_search_nodes = 0;
 | |
| 		_road_find_depot.max_search_nodes = 0;
 | |
| 
 | |
| 		_train_find_station.CalculateG = NPFRailPathCost;
 | |
| 		_train_find_depot.CalculateG = NPFRailPathCost;
 | |
| 		_road_find_station.CalculateG = NPFRoadPathCost;
 | |
| 		_road_find_depot.CalculateG = NPFRoadPathCost;
 | |
| 
 | |
| 		_train_find_station.CalculateH = NPFCalcStationHeuristic;
 | |
| 		_train_find_depot.CalculateH = NPFCalcStationHeuristic;
 | |
| 		_road_find_station.CalculateH = NPFCalcStationHeuristic;
 | |
| 		_road_find_depot.CalculateH = NPFCalcStationHeuristic;
 | |
| 
 | |
| 		_train_find_station.EndNodeCheck = NPFFindStationOrTile;
 | |
| 		_train_find_depot.EndNodeCheck = NPFFindStationOrTile;
 | |
| 		_road_find_station.EndNodeCheck = NPFFindStationOrTile;
 | |
| 		_road_find_depot.EndNodeCheck = NPFFindStationOrTile;
 | |
| 
 | |
| 		_train_find_station.FoundEndNode = NPFSaveTargetData;
 | |
| 		_train_find_depot.FoundEndNode = NPFSaveTargetData;
 | |
| 		_road_find_station.FoundEndNode = NPFSaveTargetData;
 | |
| 		_road_find_depot.FoundEndNode = NPFSaveTargetData;
 | |
| 
 | |
| 		_train_find_station.GetNeighbours = NPFFollowTrack;
 | |
| 		_train_find_depot.GetNeighbours = NPFFollowTrack;
 | |
| 		_road_find_station.GetNeighbours = NPFFollowTrack;
 | |
| 		_road_find_depot.GetNeighbours = NPFFollowTrack;
 | |
| 		*/
 | |
| }
 | |
| 
 | |
| void NPFFillWithOrderData(NPFFindStationOrTileData* fstd, Vehicle* v) {
 | |
| 	/* Ships don't really reach their stations, but the tile in front. So don't
 | |
| 	 * save the station id for ships. For roadvehs we don't store it either,
 | |
| 	 * because multistop depends on vehicles actually reaching the exact
 | |
| 	 * dest_tile, not just any stop of that station.
 | |
| 	 * So only for train orders to stations we fill fstd->station_index, for all
 | |
| 	 * others only dest_coords */
 | |
| 	if ((v->current_order.type) == OT_GOTO_STATION && v->type == VEH_Train) {
 | |
| 		const Station* st = GetStation(v->current_order.station);
 | |
| 		TileIndexDiffC center = {st->trainst_w/2, st->trainst_h/2};
 | |
| 		fstd->station_index = v->current_order.station;
 | |
| 		/* Let's take the center of the station as our target tile for trains */
 | |
| 		fstd->dest_coords = TILE_ADD(st->train_tile, ToTileIndexDiff(center));
 | |
| 	} else {
 | |
| 		fstd->dest_coords = v->dest_tile;
 | |
| 		fstd->station_index = -1;
 | |
| 	}
 | |
| }
 | 
