1022 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1022 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/* $Id$ */
 | 
						|
 | 
						|
/*
 | 
						|
 * This file is part of OpenTTD.
 | 
						|
 * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
 | 
						|
 * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 | 
						|
 * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
 | 
						|
 */
 | 
						|
 | 
						|
/** @file tgp.cpp OTTD Perlin Noise Landscape Generator, aka TerraGenesis Perlin */
 | 
						|
 | 
						|
#include "stdafx.h"
 | 
						|
#include <math.h>
 | 
						|
#include "clear_map.h"
 | 
						|
#include "void_map.h"
 | 
						|
#include "genworld.h"
 | 
						|
#include "core/alloc_func.hpp"
 | 
						|
#include "core/random_func.hpp"
 | 
						|
#include "landscape_type.h"
 | 
						|
 | 
						|
/*
 | 
						|
 *
 | 
						|
 * Quickie guide to Perlin Noise
 | 
						|
 * Perlin noise is a predictable pseudo random number sequence. By generating
 | 
						|
 * it in 2 dimensions, it becomes a useful random map, that for a given seed
 | 
						|
 * and starting X & Y is entirely predictable. On the face of it, that may not
 | 
						|
 * be useful. However, it means that if you want to replay a map in a different
 | 
						|
 * terrain, or just vary the sea level, you just re-run the generator with the
 | 
						|
 * same seed. The seed is an int32, and is randomised on each run of New Game.
 | 
						|
 * The Scenario Generator does not randomise the value, so that you can
 | 
						|
 * experiment with one terrain until you are happy, or click "Random" for a new
 | 
						|
 * random seed.
 | 
						|
 *
 | 
						|
 * Perlin Noise is a series of "octaves" of random noise added together. By
 | 
						|
 * reducing the amplitude of the noise with each octave, the first octave of
 | 
						|
 * noise defines the main terrain sweep, the next the ripples on that, and the
 | 
						|
 * next the ripples on that. I use 6 octaves, with the amplitude controlled by
 | 
						|
 * a power ratio, usually known as a persistence or p value. This I vary by the
 | 
						|
 * smoothness selection, as can be seen in the table below. The closer to 1,
 | 
						|
 * the more of that octave is added. Each octave is however raised to the power
 | 
						|
 * of its position in the list, so the last entry in the "smooth" row, 0.35, is
 | 
						|
 * raised to the power of 6, so can only add 0.001838...  of the amplitude to
 | 
						|
 * the running total.
 | 
						|
 *
 | 
						|
 * In other words; the first p value sets the general shape of the terrain, the
 | 
						|
 * second sets the major variations to that, ... until finally the smallest
 | 
						|
 * bumps are added.
 | 
						|
 *
 | 
						|
 * Usefully, this routine is totally scaleable; so when 32bpp comes along, the
 | 
						|
 * terrain can be as bumpy as you like! It is also infinitely expandable; a
 | 
						|
 * single random seed terrain continues in X & Y as far as you care to
 | 
						|
 * calculate. In theory, we could use just one seed value, but randomly select
 | 
						|
 * where in the Perlin XY space we use for the terrain. Personally I prefer
 | 
						|
 * using a simple (0, 0) to (X, Y), with a varying seed.
 | 
						|
 *
 | 
						|
 *
 | 
						|
 * Other things i have had to do: mountainous wasnt mountainous enough, and
 | 
						|
 * since we only have 0..15 heights available, I add a second generated map
 | 
						|
 * (with a modified seed), onto the original. This generally raises the
 | 
						|
 * terrain, which then needs scaling back down. Overall effect is a general
 | 
						|
 * uplift.
 | 
						|
 *
 | 
						|
 * However, the values on the top of mountains are then almost guaranteed to go
 | 
						|
 * too high, so large flat plateaus appeared at height 15. To counter this, I
 | 
						|
 * scale all heights above 12 to proportion up to 15. It still makes the
 | 
						|
 * mountains have flatish tops, rather than craggy peaks, but at least they
 | 
						|
 * arent smooth as glass.
 | 
						|
 *
 | 
						|
 *
 | 
						|
 * For a full discussion of Perlin Noise, please visit:
 | 
						|
 * http://freespace.virgin.net/hugo.elias/models/m_perlin.htm
 | 
						|
 *
 | 
						|
 *
 | 
						|
 * Evolution II
 | 
						|
 *
 | 
						|
 * The algorithm as described in the above link suggests to compute each tile height
 | 
						|
 * as composition of several noise waves. Some of them are computed directly by
 | 
						|
 * noise(x, y) function, some are calculated using linear approximation. Our
 | 
						|
 * first implementation of perlin_noise_2D() used 4 noise(x, y) calls plus
 | 
						|
 * 3 linear interpolations. It was called 6 times for each tile. This was a bit
 | 
						|
 * CPU expensive.
 | 
						|
 *
 | 
						|
 * The following implementation uses optimized algorithm that should produce
 | 
						|
 * the same quality result with much less computations, but more memory accesses.
 | 
						|
 * The overal speedup should be 300% to 800% depending on CPU and memory speed.
 | 
						|
 *
 | 
						|
 * I will try to explain it on the example below:
 | 
						|
 *
 | 
						|
 * Have a map of 4 x 4 tiles, our simplifiead noise generator produces only two
 | 
						|
 * values -1 and +1, use 3 octaves with wave lenght 1, 2 and 4, with amplitudes
 | 
						|
 * 3, 2, 1. Original algorithm produces:
 | 
						|
 *
 | 
						|
 * h00 = lerp(lerp(-3, 3, 0/4), lerp(3, -3, 0/4), 0/4) + lerp(lerp(-2,  2, 0/2), lerp( 2, -2, 0/2), 0/2) + -1 = lerp(-3.0,  3.0, 0/4) + lerp(-2,  2, 0/2) + -1 = -3.0  + -2 + -1 = -6.0
 | 
						|
 * h01 = lerp(lerp(-3, 3, 1/4), lerp(3, -3, 1/4), 0/4) + lerp(lerp(-2,  2, 1/2), lerp( 2, -2, 1/2), 0/2) +  1 = lerp(-1.5,  1.5, 0/4) + lerp( 0,  0, 0/2) +  1 = -1.5  +  0 +  1 = -0.5
 | 
						|
 * h02 = lerp(lerp(-3, 3, 2/4), lerp(3, -3, 2/4), 0/4) + lerp(lerp( 2, -2, 0/2), lerp(-2,  2, 0/2), 0/2) + -1 = lerp(   0,    0, 0/4) + lerp( 2, -2, 0/2) + -1 =    0  +  2 + -1 =  1.0
 | 
						|
 * h03 = lerp(lerp(-3, 3, 3/4), lerp(3, -3, 3/4), 0/4) + lerp(lerp( 2, -2, 1/2), lerp(-2,  2, 1/2), 0/2) +  1 = lerp( 1.5, -1.5, 0/4) + lerp( 0,  0, 0/2) +  1 =  1.5  +  0 +  1 =  2.5
 | 
						|
 *
 | 
						|
 * h10 = lerp(lerp(-3, 3, 0/4), lerp(3, -3, 0/4), 1/4) + lerp(lerp(-2,  2, 0/2), lerp( 2, -2, 0/2), 1/2) +  1 = lerp(-3.0,  3.0, 1/4) + lerp(-2,  2, 1/2) +  1 = -1.5  +  0 +  1 = -0.5
 | 
						|
 * h11 = lerp(lerp(-3, 3, 1/4), lerp(3, -3, 1/4), 1/4) + lerp(lerp(-2,  2, 1/2), lerp( 2, -2, 1/2), 1/2) + -1 = lerp(-1.5,  1.5, 1/4) + lerp( 0,  0, 1/2) + -1 = -0.75 +  0 + -1 = -1.75
 | 
						|
 * h12 = lerp(lerp(-3, 3, 2/4), lerp(3, -3, 2/4), 1/4) + lerp(lerp( 2, -2, 0/2), lerp(-2,  2, 0/2), 1/2) +  1 = lerp(   0,    0, 1/4) + lerp( 2, -2, 1/2) +  1 =    0  +  0 +  1 =  1.0
 | 
						|
 * h13 = lerp(lerp(-3, 3, 3/4), lerp(3, -3, 3/4), 1/4) + lerp(lerp( 2, -2, 1/2), lerp(-2,  2, 1/2), 1/2) + -1 = lerp( 1.5, -1.5, 1/4) + lerp( 0,  0, 1/2) + -1 =  0.75 +  0 + -1 = -0.25
 | 
						|
 *
 | 
						|
 *
 | 
						|
 * Optimization 1:
 | 
						|
 *
 | 
						|
 * 1) we need to allocate a bit more tiles: (size_x + 1) * (size_y + 1) = (5 * 5):
 | 
						|
 *
 | 
						|
 * 2) setup corner values using amplitude 3
 | 
						|
 * {    -3.0        X          X          X          3.0   }
 | 
						|
 * {     X          X          X          X          X     }
 | 
						|
 * {     X          X          X          X          X     }
 | 
						|
 * {     X          X          X          X          X     }
 | 
						|
 * {     3.0        X          X          X         -3.0   }
 | 
						|
 *
 | 
						|
 * 3a) interpolate values in the middle
 | 
						|
 * {    -3.0        X          0.0        X          3.0   }
 | 
						|
 * {     X          X          X          X          X     }
 | 
						|
 * {     0.0        X          0.0        X          0.0   }
 | 
						|
 * {     X          X          X          X          X     }
 | 
						|
 * {     3.0        X          0.0        X         -3.0   }
 | 
						|
 *
 | 
						|
 * 3b) add patches with amplitude 2 to them
 | 
						|
 * {    -5.0        X          2.0        X          1.0   }
 | 
						|
 * {     X          X          X          X          X     }
 | 
						|
 * {     2.0        X         -2.0        X          2.0   }
 | 
						|
 * {     X          X          X          X          X     }
 | 
						|
 * {     1.0        X          2.0        X         -5.0   }
 | 
						|
 *
 | 
						|
 * 4a) interpolate values in the middle
 | 
						|
 * {    -5.0       -1.5        2.0        1.5        1.0   }
 | 
						|
 * {    -1.5       -0.75       0.0        0.75       1.5   }
 | 
						|
 * {     2.0        0.0       -2.0        0.0        2.0   }
 | 
						|
 * {     1.5        0.75       0.0       -0.75      -1.5   }
 | 
						|
 * {     1.0        1.5        2.0       -1.5       -5.0   }
 | 
						|
 *
 | 
						|
 * 4b) add patches with amplitude 1 to them
 | 
						|
 * {    -6.0       -0.5        1.0        2.5        0.0   }
 | 
						|
 * {    -0.5       -1.75       1.0       -0.25       2.5   }
 | 
						|
 * {     1.0        1.0       -3.0        1.0        1.0   }
 | 
						|
 * {     2.5       -0.25       1.0       -1.75      -0.5   }
 | 
						|
 * {     0.0        2.5        1.0       -0.5       -6.0   }
 | 
						|
 *
 | 
						|
 *
 | 
						|
 *
 | 
						|
 * Optimization 2:
 | 
						|
 *
 | 
						|
 * As you can see above, each noise function was called just once. Therefore
 | 
						|
 * we don't need to use noise function that calculates the noise from x, y and
 | 
						|
 * some prime. The same quality result we can obtain using standard Random()
 | 
						|
 * function instead.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
#ifndef M_PI_2
 | 
						|
#define M_PI_2 1.57079632679489661923
 | 
						|
#define M_PI   3.14159265358979323846
 | 
						|
#endif /* M_PI_2 */
 | 
						|
 | 
						|
/** Fixed point type for heights */
 | 
						|
typedef int16 height_t;
 | 
						|
static const int height_decimal_bits = 4;
 | 
						|
static const height_t _invalid_height = -32768;
 | 
						|
 | 
						|
/** Fixed point array for amplitudes (and percent values) */
 | 
						|
typedef int amplitude_t;
 | 
						|
static const int amplitude_decimal_bits = 10;
 | 
						|
 | 
						|
/** Height map - allocated array of heights (MapSizeX() + 1) x (MapSizeY() + 1) */
 | 
						|
struct HeightMap
 | 
						|
{
 | 
						|
	height_t *h;         //< array of heights
 | 
						|
	uint     dim_x;      //< height map size_x MapSizeX() + 1
 | 
						|
	uint     total_size; //< height map total size
 | 
						|
	uint     size_x;     //< MapSizeX()
 | 
						|
	uint     size_y;     //< MapSizeY()
 | 
						|
 | 
						|
	/**
 | 
						|
	 * Height map accessor
 | 
						|
	 * @param x X position
 | 
						|
	 * @param y Y position
 | 
						|
	 * @return height as fixed point number
 | 
						|
	 */
 | 
						|
	inline height_t &height(uint x, uint y)
 | 
						|
	{
 | 
						|
		return h[x + y * dim_x];
 | 
						|
	}
 | 
						|
};
 | 
						|
 | 
						|
/** Global height map instance */
 | 
						|
static HeightMap _height_map = {NULL, 0, 0, 0, 0};
 | 
						|
 | 
						|
/** Conversion: int to height_t */
 | 
						|
#define I2H(i) ((i) << height_decimal_bits)
 | 
						|
/** Conversion: height_t to int */
 | 
						|
#define H2I(i) ((i) >> height_decimal_bits)
 | 
						|
 | 
						|
/** Conversion: int to amplitude_t */
 | 
						|
#define I2A(i) ((i) << amplitude_decimal_bits)
 | 
						|
/** Conversion: amplitude_t to int */
 | 
						|
#define A2I(i) ((i) >> amplitude_decimal_bits)
 | 
						|
 | 
						|
/** Conversion: amplitude_t to height_t */
 | 
						|
#define A2H(a) ((a) >> (amplitude_decimal_bits - height_decimal_bits))
 | 
						|
 | 
						|
 | 
						|
/** Walk through all items of _height_map.h */
 | 
						|
#define FOR_ALL_TILES_IN_HEIGHT(h) for (h = _height_map.h; h < &_height_map.h[_height_map.total_size]; h++)
 | 
						|
 | 
						|
/** Maximum index into array of noise amplitudes */
 | 
						|
static const int TGP_FREQUENCY_MAX = 6;
 | 
						|
 | 
						|
/** Noise amplitudes (multiplied by 1024)
 | 
						|
 * - indexed by "smoothness setting" and log2(frequency) */
 | 
						|
static const amplitude_t _amplitudes_by_smoothness_and_frequency[4][TGP_FREQUENCY_MAX + 1] = {
 | 
						|
	/* lowest frequncy....  ...highest (every corner) */
 | 
						|
	/* Very smooth */
 | 
						|
	{16000,  5600,  1968,   688,   240,    16,    16},
 | 
						|
	/* Smooth */
 | 
						|
	{16000, 16000,  6448,  3200,  1024,   128,    16},
 | 
						|
	/* Rough */
 | 
						|
	{16000, 19200, 12800,  8000,  3200,   256,    64},
 | 
						|
	/* Very Rough */
 | 
						|
	{24000, 16000, 19200, 16000,  8000,   512,   320},
 | 
						|
};
 | 
						|
 | 
						|
/** Desired water percentage (100% == 1024) - indexed by _settings_game.difficulty.quantity_sea_lakes */
 | 
						|
static const amplitude_t _water_percent[4] = {20, 80, 250, 400};
 | 
						|
 | 
						|
/** Desired maximum height - indexed by _settings_game.difficulty.terrain_type */
 | 
						|
static const int8 _max_height[4] = {
 | 
						|
	6,       ///< Very flat
 | 
						|
	9,       ///< Flat
 | 
						|
	12,      ///< Hilly
 | 
						|
	15       ///< Mountainous
 | 
						|
};
 | 
						|
 | 
						|
/** Check if a X/Y set are within the map.
 | 
						|
 * @param x coordinate x
 | 
						|
 * @param y coordinate y
 | 
						|
 * @return true if within the map
 | 
						|
 */
 | 
						|
static inline bool IsValidXY(uint x, uint y)
 | 
						|
{
 | 
						|
	return ((int)x) >= 0 && x < _height_map.size_x && ((int)y) >= 0 && y < _height_map.size_y;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Allocate array of (MapSizeX()+1)*(MapSizeY()+1) heights and init the _height_map structure members
 | 
						|
 * @return true on success
 | 
						|
 */
 | 
						|
static inline bool AllocHeightMap()
 | 
						|
{
 | 
						|
	height_t *h;
 | 
						|
 | 
						|
	_height_map.size_x = MapSizeX();
 | 
						|
	_height_map.size_y = MapSizeY();
 | 
						|
 | 
						|
	/* Allocate memory block for height map row pointers */
 | 
						|
	_height_map.total_size = (_height_map.size_x + 1) * (_height_map.size_y + 1);
 | 
						|
	_height_map.dim_x = _height_map.size_x + 1;
 | 
						|
	_height_map.h = CallocT<height_t>(_height_map.total_size);
 | 
						|
 | 
						|
	/* Iterate through height map initialize values */
 | 
						|
	FOR_ALL_TILES_IN_HEIGHT(h) *h = _invalid_height;
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
/** Free height map */
 | 
						|
static inline void FreeHeightMap()
 | 
						|
{
 | 
						|
	if (_height_map.h == NULL) return;
 | 
						|
	free(_height_map.h);
 | 
						|
	_height_map.h = NULL;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Generates new random height in given amplitude (generated numbers will range from - amplitude to + amplitude)
 | 
						|
 * @param rMax Limit of result
 | 
						|
 * @return generated height
 | 
						|
 */
 | 
						|
static inline height_t RandomHeight(amplitude_t rMax)
 | 
						|
{
 | 
						|
	amplitude_t ra = (Random() << 16) | (Random() & 0x0000FFFF);
 | 
						|
	height_t rh;
 | 
						|
	/* Spread height into range -rMax..+rMax */
 | 
						|
	rh = A2H(ra % (2 * rMax + 1) - rMax);
 | 
						|
	return rh;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * One interpolation and noise round
 | 
						|
 *
 | 
						|
 * The heights on the map are generated in an iterative process.
 | 
						|
 * We start off with a frequency of 1 (log_frequency == 0), and generate heights only for corners on the most coarsly mesh
 | 
						|
 * (i.e. only for x/y coordinates which are multiples of the minimum edge length).
 | 
						|
 *
 | 
						|
 * After this initial step the frequency is doubled (log_frequency incremented) each iteration to generate corners on the next finer mesh.
 | 
						|
 * The heights of the newly added corners are first set by interpolating the heights from the previous iteration.
 | 
						|
 * Finally noise with the given amplitude is applied to all corners of the new mesh.
 | 
						|
 *
 | 
						|
 * Generation terminates, when the frequency has reached the map size. I.e. the mesh is as fine as the map, and every corner height
 | 
						|
 * has been set.
 | 
						|
 *
 | 
						|
 * @param log_frequency frequency (logarithmic) to apply noise for
 | 
						|
 * @param amplitude Amplitude for the noise
 | 
						|
 * @return false if we are finished (reached the minimal step size / highest frequency)
 | 
						|
 */
 | 
						|
static bool ApplyNoise(uint log_frequency, amplitude_t amplitude)
 | 
						|
{
 | 
						|
	uint size_min = min(_height_map.size_x, _height_map.size_y);
 | 
						|
	uint step = size_min >> log_frequency;
 | 
						|
	uint x, y;
 | 
						|
 | 
						|
	/* Trying to apply noise to uninitialized height map */
 | 
						|
	assert(_height_map.h != NULL);
 | 
						|
 | 
						|
	/* Are we finished? */
 | 
						|
	if (step == 0) return false;
 | 
						|
 | 
						|
	if (log_frequency == 0) {
 | 
						|
		/* This is first round, we need to establish base heights with step = size_min */
 | 
						|
		for (y = 0; y <= _height_map.size_y; y += step) {
 | 
						|
			for (x = 0; x <= _height_map.size_x; x += step) {
 | 
						|
				height_t height = (amplitude > 0) ? RandomHeight(amplitude) : 0;
 | 
						|
				_height_map.height(x, y) = height;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
 | 
						|
	/* It is regular iteration round.
 | 
						|
	 * Interpolate height values at odd x, even y tiles */
 | 
						|
	for (y = 0; y <= _height_map.size_y; y += 2 * step) {
 | 
						|
		for (x = 0; x < _height_map.size_x; x += 2 * step) {
 | 
						|
			height_t h00 = _height_map.height(x + 0 * step, y);
 | 
						|
			height_t h02 = _height_map.height(x + 2 * step, y);
 | 
						|
			height_t h01 = (h00 + h02) / 2;
 | 
						|
			_height_map.height(x + 1 * step, y) = h01;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Interpolate height values at odd y tiles */
 | 
						|
	for (y = 0; y < _height_map.size_y; y += 2 * step) {
 | 
						|
		for (x = 0; x <= _height_map.size_x; x += step) {
 | 
						|
			height_t h00 = _height_map.height(x, y + 0 * step);
 | 
						|
			height_t h20 = _height_map.height(x, y + 2 * step);
 | 
						|
			height_t h10 = (h00 + h20) / 2;
 | 
						|
			_height_map.height(x, y + 1 * step) = h10;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Add noise for next higher frequency (smaller steps) */
 | 
						|
	for (y = 0; y <= _height_map.size_y; y += step) {
 | 
						|
		for (x = 0; x <= _height_map.size_x; x += step) {
 | 
						|
			_height_map.height(x, y) += RandomHeight(amplitude);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return (step > 1);
 | 
						|
}
 | 
						|
 | 
						|
/** Base Perlin noise generator - fills height map with raw Perlin noise */
 | 
						|
static void HeightMapGenerate()
 | 
						|
{
 | 
						|
	uint size_min = min(_height_map.size_x, _height_map.size_y);
 | 
						|
	uint iteration_round = 0;
 | 
						|
	amplitude_t amplitude;
 | 
						|
	bool continue_iteration;
 | 
						|
	int log_size_min, log_frequency_min;
 | 
						|
	int log_frequency;
 | 
						|
 | 
						|
	/* Find first power of two that fits, so that later log_frequency == TGP_FREQUENCY_MAX in the last iteration */
 | 
						|
	for (log_size_min = TGP_FREQUENCY_MAX; (1U << log_size_min) < size_min; log_size_min++) { }
 | 
						|
	log_frequency_min = log_size_min - TGP_FREQUENCY_MAX;
 | 
						|
 | 
						|
	/* Zero must be part of the iteration, else initialization will fail. */
 | 
						|
	assert(log_frequency_min >= 0);
 | 
						|
 | 
						|
	/* Keep increasing the frequency until we reach the step size equal to one tile */
 | 
						|
	do {
 | 
						|
		log_frequency = iteration_round - log_frequency_min;
 | 
						|
		if (log_frequency >= 0) {
 | 
						|
			/* Apply noise for the next frequency */
 | 
						|
			assert(log_frequency <= TGP_FREQUENCY_MAX);
 | 
						|
			amplitude = _amplitudes_by_smoothness_and_frequency[_settings_game.game_creation.tgen_smoothness][log_frequency];
 | 
						|
		} else {
 | 
						|
			/* Amplitude for the low frequencies on big maps is 0, i.e. initialise with zero height */
 | 
						|
			amplitude = 0;
 | 
						|
		}
 | 
						|
		continue_iteration = ApplyNoise(iteration_round, amplitude);
 | 
						|
		iteration_round++;
 | 
						|
	} while (continue_iteration);
 | 
						|
	assert(log_frequency == TGP_FREQUENCY_MAX);
 | 
						|
}
 | 
						|
 | 
						|
/** Returns min, max and average height from height map */
 | 
						|
static void HeightMapGetMinMaxAvg(height_t *min_ptr, height_t *max_ptr, height_t *avg_ptr)
 | 
						|
{
 | 
						|
	height_t h_min, h_max, h_avg, *h;
 | 
						|
	int64 h_accu = 0;
 | 
						|
	h_min = h_max = _height_map.height(0, 0);
 | 
						|
 | 
						|
	/* Get h_min, h_max and accumulate heights into h_accu */
 | 
						|
	FOR_ALL_TILES_IN_HEIGHT(h) {
 | 
						|
		if (*h < h_min) h_min = *h;
 | 
						|
		if (*h > h_max) h_max = *h;
 | 
						|
		h_accu += *h;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Get average height */
 | 
						|
	h_avg = (height_t)(h_accu / (_height_map.size_x * _height_map.size_y));
 | 
						|
 | 
						|
	/* Return required results */
 | 
						|
	if (min_ptr != NULL) *min_ptr = h_min;
 | 
						|
	if (max_ptr != NULL) *max_ptr = h_max;
 | 
						|
	if (avg_ptr != NULL) *avg_ptr = h_avg;
 | 
						|
}
 | 
						|
 | 
						|
/** Dill histogram and return pointer to its base point - to the count of zero heights */
 | 
						|
static int *HeightMapMakeHistogram(height_t h_min, height_t h_max, int *hist_buf)
 | 
						|
{
 | 
						|
	int *hist = hist_buf - h_min;
 | 
						|
	height_t *h;
 | 
						|
 | 
						|
	/* Count the heights and fill the histogram */
 | 
						|
	FOR_ALL_TILES_IN_HEIGHT(h) {
 | 
						|
		assert(*h >= h_min);
 | 
						|
		assert(*h <= h_max);
 | 
						|
		hist[*h]++;
 | 
						|
	}
 | 
						|
	return hist;
 | 
						|
}
 | 
						|
 | 
						|
/** Applies sine wave redistribution onto height map */
 | 
						|
static void HeightMapSineTransform(height_t h_min, height_t h_max)
 | 
						|
{
 | 
						|
	height_t *h;
 | 
						|
 | 
						|
	FOR_ALL_TILES_IN_HEIGHT(h) {
 | 
						|
		double fheight;
 | 
						|
 | 
						|
		if (*h < h_min) continue;
 | 
						|
 | 
						|
		/* Transform height into 0..1 space */
 | 
						|
		fheight = (double)(*h - h_min) / (double)(h_max - h_min);
 | 
						|
		/* Apply sine transform depending on landscape type */
 | 
						|
		switch (_settings_game.game_creation.landscape) {
 | 
						|
			case LT_TOYLAND:
 | 
						|
			case LT_TEMPERATE:
 | 
						|
				/* Move and scale 0..1 into -1..+1 */
 | 
						|
				fheight = 2 * fheight - 1;
 | 
						|
				/* Sine transform */
 | 
						|
				fheight = sin(fheight * M_PI_2);
 | 
						|
				/* Transform it back from -1..1 into 0..1 space */
 | 
						|
				fheight = 0.5 * (fheight + 1);
 | 
						|
				break;
 | 
						|
 | 
						|
			case LT_ARCTIC:
 | 
						|
				{
 | 
						|
					/* Arctic terrain needs special height distribution.
 | 
						|
					 * Redistribute heights to have more tiles at highest (75%..100%) range */
 | 
						|
					double sine_upper_limit = 0.75;
 | 
						|
					double linear_compression = 2;
 | 
						|
					if (fheight >= sine_upper_limit) {
 | 
						|
						/* Over the limit we do linear compression up */
 | 
						|
						fheight = 1.0 - (1.0 - fheight) / linear_compression;
 | 
						|
					} else {
 | 
						|
						double m = 1.0 - (1.0 - sine_upper_limit) / linear_compression;
 | 
						|
						/* Get 0..sine_upper_limit into -1..1 */
 | 
						|
						fheight = 2.0 * fheight / sine_upper_limit - 1.0;
 | 
						|
						/* Sine wave transform */
 | 
						|
						fheight = sin(fheight * M_PI_2);
 | 
						|
						/* Get -1..1 back to 0..(1 - (1 - sine_upper_limit) / linear_compression) == 0.0..m */
 | 
						|
						fheight = 0.5 * (fheight + 1.0) * m;
 | 
						|
					}
 | 
						|
				}
 | 
						|
				break;
 | 
						|
 | 
						|
			case LT_TROPIC:
 | 
						|
				{
 | 
						|
					/* Desert terrain needs special height distribution.
 | 
						|
					 * Half of tiles should be at lowest (0..25%) heights */
 | 
						|
					double sine_lower_limit = 0.5;
 | 
						|
					double linear_compression = 2;
 | 
						|
					if (fheight <= sine_lower_limit) {
 | 
						|
						/* Under the limit we do linear compression down */
 | 
						|
						fheight = fheight / linear_compression;
 | 
						|
					} else {
 | 
						|
						double m = sine_lower_limit / linear_compression;
 | 
						|
						/* Get sine_lower_limit..1 into -1..1 */
 | 
						|
						fheight = 2.0 * ((fheight - sine_lower_limit) / (1.0 - sine_lower_limit)) - 1.0;
 | 
						|
						/* Sine wave transform */
 | 
						|
						fheight = sin(fheight * M_PI_2);
 | 
						|
						/* Get -1..1 back to (sine_lower_limit / linear_compression)..1.0 */
 | 
						|
						fheight = 0.5 * ((1.0 - m) * fheight + (1.0 + m));
 | 
						|
					}
 | 
						|
				}
 | 
						|
				break;
 | 
						|
 | 
						|
			default:
 | 
						|
				NOT_REACHED();
 | 
						|
				break;
 | 
						|
		}
 | 
						|
		/* Transform it back into h_min..h_max space */
 | 
						|
		*h = (height_t)(fheight * (h_max - h_min) + h_min);
 | 
						|
		if (*h < 0) *h = I2H(0);
 | 
						|
		if (*h >= h_max) *h = h_max - 1;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Additional map variety is provided by applying different curve maps
 | 
						|
 * to different parts of the map. A randomized low resolution grid contains
 | 
						|
 * which curve map to use on each part of the make. This filtered non-linearly
 | 
						|
 * to smooth out transitions between curves, so each tile could have between
 | 
						|
 * 100% of one map applied or 25% of four maps.
 | 
						|
 *
 | 
						|
 * The curve maps define different land styles, i.e. lakes, low-lands, hills
 | 
						|
 * and mountain ranges, although these are dependent on the landscape style
 | 
						|
 * chosen as well.
 | 
						|
 *
 | 
						|
 * The level parameter dictates the resolution of the grid. A low resolution
 | 
						|
 * grid will result in larger continuous areas of a land style, a higher
 | 
						|
 * resolution grid splits the style into smaller areas.
 | 
						|
 *
 | 
						|
 * At this point in map generation, all height data has been normalized to 0
 | 
						|
 * to 239.
 | 
						|
 */
 | 
						|
struct control_point_t {
 | 
						|
	height_t x;
 | 
						|
	height_t y;
 | 
						|
};
 | 
						|
 | 
						|
struct control_point_list_t {
 | 
						|
	size_t length;
 | 
						|
	const control_point_t *list;
 | 
						|
};
 | 
						|
 | 
						|
static const control_point_t _curve_map_1[] = {
 | 
						|
	{ 0, 0 }, { 48, 24 }, { 192, 32 }, { 240, 96 }
 | 
						|
};
 | 
						|
 | 
						|
static const control_point_t _curve_map_2[] = {
 | 
						|
	{ 0, 0 }, { 16, 24 }, { 128, 32 }, { 192, 64 }, { 240, 144 }
 | 
						|
};
 | 
						|
 | 
						|
static const control_point_t _curve_map_3[] = {
 | 
						|
	{ 0, 0 }, { 16, 24 }, { 128, 64 }, { 192, 144 }, { 240, 192 }
 | 
						|
};
 | 
						|
 | 
						|
static const control_point_t _curve_map_4[] = {
 | 
						|
	{ 0, 0 }, { 16, 24 }, { 96, 72 }, { 160, 192 }, { 220, 239 }, { 240, 239 }
 | 
						|
};
 | 
						|
 | 
						|
static const control_point_list_t _curve_maps[] = {
 | 
						|
	{ lengthof(_curve_map_1), _curve_map_1 },
 | 
						|
	{ lengthof(_curve_map_2), _curve_map_2 },
 | 
						|
	{ lengthof(_curve_map_3), _curve_map_3 },
 | 
						|
	{ lengthof(_curve_map_4), _curve_map_4 },
 | 
						|
};
 | 
						|
 | 
						|
static void HeightMapCurves(uint level)
 | 
						|
{
 | 
						|
	height_t ht[lengthof(_curve_maps)];
 | 
						|
 | 
						|
	/* Set up a grid to choose curve maps based on location */
 | 
						|
	uint sx = Clamp(1 << level, 2, 32);
 | 
						|
	uint sy = Clamp(1 << level, 2, 32);
 | 
						|
	byte *c = (byte *)alloca(sx * sy);
 | 
						|
 | 
						|
	for (uint i = 0; i < sx * sy; i++) {
 | 
						|
		c[i] = Random() % lengthof(_curve_maps);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Apply curves */
 | 
						|
	for (uint x = 0; x < _height_map.size_x; x++) {
 | 
						|
 | 
						|
		/* Get our X grid positions and bi-linear ratio */
 | 
						|
		float fx = (float)(sx * x) / _height_map.size_x + 0.5f;
 | 
						|
		uint x1 = (uint)fx;
 | 
						|
		uint x2 = x1;
 | 
						|
		float xr = 2.0f * (fx - x1) - 1.0f;
 | 
						|
		xr = sin(xr * M_PI_2);
 | 
						|
		xr = sin(xr * M_PI_2);
 | 
						|
		xr = 0.5f * (xr + 1.0f);
 | 
						|
		float xri = 1.0f - xr;
 | 
						|
 | 
						|
		if (x1 > 0) {
 | 
						|
			x1--;
 | 
						|
			if (x2 >= sx) x2--;
 | 
						|
		}
 | 
						|
 | 
						|
		for (uint y = 0; y < _height_map.size_y; y++) {
 | 
						|
 | 
						|
			/* Get our Y grid position and bi-linear ratio */
 | 
						|
			float fy = (float)(sy * y) / _height_map.size_y + 0.5f;
 | 
						|
			uint y1 = (uint)fy;
 | 
						|
			uint y2 = y1;
 | 
						|
			float yr = 2.0f * (fy - y1) - 1.0f;
 | 
						|
			yr = sin(yr * M_PI_2);
 | 
						|
			yr = sin(yr * M_PI_2);
 | 
						|
			yr = 0.5f * (yr + 1.0f);
 | 
						|
			float yri = 1.0f - yr;
 | 
						|
 | 
						|
			if (y1 > 0) {
 | 
						|
				y1--;
 | 
						|
				if (y2 >= sy) y2--;
 | 
						|
			}
 | 
						|
 | 
						|
			uint corner_a = c[x1 + sx * y1];
 | 
						|
			uint corner_b = c[x1 + sx * y2];
 | 
						|
			uint corner_c = c[x2 + sx * y1];
 | 
						|
			uint corner_d = c[x2 + sx * y2];
 | 
						|
 | 
						|
			/* Bitmask of which curve maps are chosen, so that we do not bother
 | 
						|
			 * calculating a curve which won't be used. */
 | 
						|
			uint corner_bits = 0;
 | 
						|
			corner_bits |= 1 << corner_a;
 | 
						|
			corner_bits |= 1 << corner_b;
 | 
						|
			corner_bits |= 1 << corner_c;
 | 
						|
			corner_bits |= 1 << corner_d;
 | 
						|
 | 
						|
			height_t *h = &_height_map.height(x, y);
 | 
						|
 | 
						|
			/* Apply all curve maps that are used on this tile. */
 | 
						|
			for (uint t = 0; t < lengthof(_curve_maps); t++) {
 | 
						|
				if (!HasBit(corner_bits, t)) continue;
 | 
						|
 | 
						|
				const control_point_t *cm = _curve_maps[t].list;
 | 
						|
				for (uint i = 0; i < _curve_maps[t].length - 1; i++) {
 | 
						|
					const control_point_t &p1 = cm[i];
 | 
						|
					const control_point_t &p2 = cm[i + 1];
 | 
						|
 | 
						|
					if (*h >= p1.x && *h < p2.x) {
 | 
						|
						ht[t] = p1.y + (*h - p1.x) * (p2.y - p1.y) / (p2.x - p1.x);
 | 
						|
						break;
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			/* Apply interpolation of curve map results. */
 | 
						|
			*h = (height_t)((ht[corner_a] * yri + ht[corner_b] * yr) * xri + (ht[corner_c] * yri + ht[corner_d] * yr) * xr);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/** Adjusts heights in height map to contain required amount of water tiles */
 | 
						|
static void HeightMapAdjustWaterLevel(amplitude_t water_percent, height_t h_max_new)
 | 
						|
{
 | 
						|
	height_t h_min, h_max, h_avg, h_water_level;
 | 
						|
	int water_tiles, desired_water_tiles;
 | 
						|
	height_t *h;
 | 
						|
	int *hist;
 | 
						|
 | 
						|
	HeightMapGetMinMaxAvg(&h_min, &h_max, &h_avg);
 | 
						|
 | 
						|
	/* Allocate histogram buffer and clear its cells */
 | 
						|
	int *hist_buf = CallocT<int>(h_max - h_min + 1);
 | 
						|
	/* Fill histogram */
 | 
						|
	hist = HeightMapMakeHistogram(h_min, h_max, hist_buf);
 | 
						|
 | 
						|
	/* How many water tiles do we want? */
 | 
						|
	desired_water_tiles = (int)(((int64)water_percent) * (int64)(_height_map.size_x * _height_map.size_y)) >> amplitude_decimal_bits;
 | 
						|
 | 
						|
	/* Raise water_level and accumulate values from histogram until we reach required number of water tiles */
 | 
						|
	for (h_water_level = h_min, water_tiles = 0; h_water_level < h_max; h_water_level++) {
 | 
						|
		water_tiles += hist[h_water_level];
 | 
						|
		if (water_tiles >= desired_water_tiles) break;
 | 
						|
	}
 | 
						|
 | 
						|
	/* We now have the proper water level value.
 | 
						|
	 * Transform the height map into new (normalized) height map:
 | 
						|
	 *   values from range: h_min..h_water_level will become negative so it will be clamped to 0
 | 
						|
	 *   values from range: h_water_level..h_max are transformed into 0..h_max_new
 | 
						|
	 *   where h_max_new is 4, 8, 12 or 16 depending on terrain type (very flat, flat, hilly, mountains)
 | 
						|
	 */
 | 
						|
	FOR_ALL_TILES_IN_HEIGHT(h) {
 | 
						|
		/* Transform height from range h_water_level..h_max into 0..h_max_new range */
 | 
						|
		*h = (height_t)(((int)h_max_new) * (*h - h_water_level) / (h_max - h_water_level)) + I2H(1);
 | 
						|
		/* Make sure all values are in the proper range (0..h_max_new) */
 | 
						|
		if (*h < 0) *h = I2H(0);
 | 
						|
		if (*h >= h_max_new) *h = h_max_new - 1;
 | 
						|
	}
 | 
						|
 | 
						|
	free(hist_buf);
 | 
						|
}
 | 
						|
 | 
						|
static double perlin_coast_noise_2D(const double x, const double y, const double p, const int prime);
 | 
						|
 | 
						|
/**
 | 
						|
 * This routine sculpts in from the edge a random amount, again a Perlin
 | 
						|
 * sequence, to avoid the rigid flat-edge slopes that were present before. The
 | 
						|
 * Perlin noise map doesnt know where we are going to slice across, and so we
 | 
						|
 * often cut straight through high terrain. the smoothing routine makes it
 | 
						|
 * legal, gradually increasing up from the edge to the original terrain height.
 | 
						|
 * By cutting parts of this away, it gives a far more irregular edge to the
 | 
						|
 * map-edge. Sometimes it works beautifully with the existing sea & lakes, and
 | 
						|
 * creates a very realistic coastline. Other times the variation is less, and
 | 
						|
 * the map-edge shows its cliff-like roots.
 | 
						|
 *
 | 
						|
 * This routine may be extended to randomly sculpt the height of the terrain
 | 
						|
 * near the edge. This will have the coast edge at low level (1-3), rising in
 | 
						|
 * smoothed steps inland to about 15 tiles in. This should make it look as
 | 
						|
 * though the map has been built for the map size, rather than a slice through
 | 
						|
 * a larger map.
 | 
						|
 *
 | 
						|
 * Please note that all the small numbers; 53, 101, 167, etc. are small primes
 | 
						|
 * to help give the perlin noise a bit more of a random feel.
 | 
						|
 */
 | 
						|
static void HeightMapCoastLines(uint8 water_borders)
 | 
						|
{
 | 
						|
	int smallest_size = min(_settings_game.game_creation.map_x, _settings_game.game_creation.map_y);
 | 
						|
	const int margin = 4;
 | 
						|
	uint y, x;
 | 
						|
	double max_x;
 | 
						|
	double max_y;
 | 
						|
 | 
						|
	/* Lower to sea level */
 | 
						|
	for (y = 0; y <= _height_map.size_y; y++) {
 | 
						|
		if (HasBit(water_borders, BORDER_NE)) {
 | 
						|
			/* Top right */
 | 
						|
			max_x = abs((perlin_coast_noise_2D(_height_map.size_y - y, y, 0.9, 53) + 0.25) * 5 + (perlin_coast_noise_2D(y, y, 0.35, 179) + 1) * 12);
 | 
						|
			max_x = max((smallest_size * smallest_size / 16) + max_x, (smallest_size * smallest_size / 16) + margin - max_x);
 | 
						|
			if (smallest_size < 8 && max_x > 5) max_x /= 1.5;
 | 
						|
			for (x = 0; x < max_x; x++) {
 | 
						|
				_height_map.height(x, y) = 0;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		if (HasBit(water_borders, BORDER_SW)) {
 | 
						|
			/* Bottom left */
 | 
						|
			max_x = abs((perlin_coast_noise_2D(_height_map.size_y - y, y, 0.85, 101) + 0.3) * 6 + (perlin_coast_noise_2D(y, y, 0.45,  67) + 0.75) * 8);
 | 
						|
			max_x = max((smallest_size * smallest_size / 16) + max_x, (smallest_size * smallest_size / 16) + margin - max_x);
 | 
						|
			if (smallest_size < 8 && max_x > 5) max_x /= 1.5;
 | 
						|
			for (x = _height_map.size_x; x > (_height_map.size_x - 1 - max_x); x--) {
 | 
						|
				_height_map.height(x, y) = 0;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Lower to sea level */
 | 
						|
	for (x = 0; x <= _height_map.size_x; x++) {
 | 
						|
		if (HasBit(water_borders, BORDER_NW)) {
 | 
						|
			/* Top left */
 | 
						|
			max_y = abs((perlin_coast_noise_2D(x, _height_map.size_y / 2, 0.9, 167) + 0.4) * 5 + (perlin_coast_noise_2D(x, _height_map.size_y / 3, 0.4, 211) + 0.7) * 9);
 | 
						|
			max_y = max((smallest_size * smallest_size / 16) + max_y, (smallest_size * smallest_size / 16) + margin - max_y);
 | 
						|
			if (smallest_size < 8 && max_y > 5) max_y /= 1.5;
 | 
						|
			for (y = 0; y < max_y; y++) {
 | 
						|
				_height_map.height(x, y) = 0;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		if (HasBit(water_borders, BORDER_SE)) {
 | 
						|
			/* Bottom right */
 | 
						|
			max_y = abs((perlin_coast_noise_2D(x, _height_map.size_y / 3, 0.85, 71) + 0.25) * 6 + (perlin_coast_noise_2D(x, _height_map.size_y / 3, 0.35, 193) + 0.75) * 12);
 | 
						|
			max_y = max((smallest_size * smallest_size / 16) + max_y, (smallest_size * smallest_size / 16) + margin - max_y);
 | 
						|
			if (smallest_size < 8 && max_y > 5) max_y /= 1.5;
 | 
						|
			for (y = _height_map.size_y; y > (_height_map.size_y - 1 - max_y); y--) {
 | 
						|
				_height_map.height(x, y) = 0;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/** Start at given point, move in given direction, find and Smooth coast in that direction */
 | 
						|
static void HeightMapSmoothCoastInDirection(int org_x, int org_y, int dir_x, int dir_y)
 | 
						|
{
 | 
						|
	const int max_coast_dist_from_edge = 35;
 | 
						|
	const int max_coast_Smooth_depth = 35;
 | 
						|
 | 
						|
	int x, y;
 | 
						|
	int ed; // coast distance from edge
 | 
						|
	int depth;
 | 
						|
 | 
						|
	height_t h_prev = 16;
 | 
						|
	height_t h;
 | 
						|
 | 
						|
	assert(IsValidXY(org_x, org_y));
 | 
						|
 | 
						|
	/* Search for the coast (first non-water tile) */
 | 
						|
	for (x = org_x, y = org_y, ed = 0; IsValidXY(x, y) && ed < max_coast_dist_from_edge; x += dir_x, y += dir_y, ed++) {
 | 
						|
		/* Coast found? */
 | 
						|
		if (_height_map.height(x, y) > 15) break;
 | 
						|
 | 
						|
		/* Coast found in the neighborhood? */
 | 
						|
		if (IsValidXY(x + dir_y, y + dir_x) && _height_map.height(x + dir_y, y + dir_x) > 0) break;
 | 
						|
 | 
						|
		/* Coast found in the neighborhood on the other side */
 | 
						|
		if (IsValidXY(x - dir_y, y - dir_x) && _height_map.height(x - dir_y, y - dir_x) > 0) break;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Coast found or max_coast_dist_from_edge has been reached.
 | 
						|
	 * Soften the coast slope */
 | 
						|
	for (depth = 0; IsValidXY(x, y) && depth <= max_coast_Smooth_depth; depth++, x += dir_x, y += dir_y) {
 | 
						|
		h = _height_map.height(x, y);
 | 
						|
		h = min(h, h_prev + (4 + depth)); // coast softening formula
 | 
						|
		_height_map.height(x, y) = h;
 | 
						|
		h_prev = h;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/** Smooth coasts by modulating height of tiles close to map edges with cosine of distance from edge */
 | 
						|
static void HeightMapSmoothCoasts(uint8 water_borders)
 | 
						|
{
 | 
						|
	uint x, y;
 | 
						|
	/* First Smooth NW and SE coasts (y close to 0 and y close to size_y) */
 | 
						|
	for (x = 0; x < _height_map.size_x; x++) {
 | 
						|
		if (HasBit(water_borders, BORDER_NW)) HeightMapSmoothCoastInDirection(x, 0, 0, 1);
 | 
						|
		if (HasBit(water_borders, BORDER_SE)) HeightMapSmoothCoastInDirection(x, _height_map.size_y - 1, 0, -1);
 | 
						|
	}
 | 
						|
	/* First Smooth NE and SW coasts (x close to 0 and x close to size_x) */
 | 
						|
	for (y = 0; y < _height_map.size_y; y++) {
 | 
						|
		if (HasBit(water_borders, BORDER_NE)) HeightMapSmoothCoastInDirection(0, y, 1, 0);
 | 
						|
		if (HasBit(water_borders, BORDER_SW)) HeightMapSmoothCoastInDirection(_height_map.size_x - 1, y, -1, 0);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * This routine provides the essential cleanup necessary before OTTD can
 | 
						|
 * display the terrain. When generated, the terrain heights can jump more than
 | 
						|
 * one level between tiles. This routine smooths out those differences so that
 | 
						|
 * the most it can change is one level. When OTTD can support cliffs, this
 | 
						|
 * routine may not be necessary.
 | 
						|
 */
 | 
						|
static void HeightMapSmoothSlopes(height_t dh_max)
 | 
						|
{
 | 
						|
	int x, y;
 | 
						|
	for (y = 0; y <= (int)_height_map.size_y; y++) {
 | 
						|
		for (x = 0; x <= (int)_height_map.size_x; x++) {
 | 
						|
			height_t h_max = min(_height_map.height(x > 0 ? x - 1 : x, y), _height_map.height(x, y > 0 ? y - 1 : y)) + dh_max;
 | 
						|
			if (_height_map.height(x, y) > h_max) _height_map.height(x, y) = h_max;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	for (y = _height_map.size_y; y >= 0; y--) {
 | 
						|
		for (x = _height_map.size_x; x >= 0; x--) {
 | 
						|
			height_t h_max = min(_height_map.height((uint)x < _height_map.size_x ? x + 1 : x, y), _height_map.height(x, (uint)y < _height_map.size_y ? y + 1 : y)) + dh_max;
 | 
						|
			if (_height_map.height(x, y) > h_max) _height_map.height(x, y) = h_max;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/** Height map terraform post processing:
 | 
						|
 *  - water level adjusting
 | 
						|
 *  - coast Smoothing
 | 
						|
 *  - slope Smoothing
 | 
						|
 *  - height histogram redistribution by sine wave transform */
 | 
						|
static void HeightMapNormalize()
 | 
						|
{
 | 
						|
	const amplitude_t water_percent = _water_percent[_settings_game.difficulty.quantity_sea_lakes];
 | 
						|
	const height_t h_max_new = I2H(_max_height[_settings_game.difficulty.terrain_type]);
 | 
						|
	const height_t roughness = 7 + 3 * _settings_game.game_creation.tgen_smoothness;
 | 
						|
 | 
						|
	HeightMapAdjustWaterLevel(water_percent, h_max_new);
 | 
						|
 | 
						|
	byte water_borders = _settings_game.construction.freeform_edges ? _settings_game.game_creation.water_borders : 0xF;
 | 
						|
	if (water_borders == BORDERS_RANDOM) water_borders = GB(Random(), 0, 4);
 | 
						|
 | 
						|
	HeightMapCoastLines(water_borders);
 | 
						|
	HeightMapSmoothSlopes(roughness);
 | 
						|
 | 
						|
	HeightMapSmoothCoasts(water_borders);
 | 
						|
	HeightMapSmoothSlopes(roughness);
 | 
						|
 | 
						|
	HeightMapSineTransform(12, h_max_new);
 | 
						|
 | 
						|
	if (_settings_game.game_creation.variety > 0) {
 | 
						|
		HeightMapCurves(_settings_game.game_creation.variety);
 | 
						|
	}
 | 
						|
 | 
						|
	HeightMapSmoothSlopes(16);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * The Perlin Noise calculation using large primes
 | 
						|
 * The initial number is adjusted by two values; the generation_seed, and the
 | 
						|
 * passed parameter; prime.
 | 
						|
 * prime is used to allow the perlin noise generator to create useful random
 | 
						|
 * numbers from slightly different series.
 | 
						|
 */
 | 
						|
static double int_noise(const long x, const long y, const int prime)
 | 
						|
{
 | 
						|
	long n = x + y * prime + _settings_game.game_creation.generation_seed;
 | 
						|
 | 
						|
	n = (n << 13) ^ n;
 | 
						|
 | 
						|
	/* Pseudo-random number generator, using several large primes */
 | 
						|
	return 1.0 - (double)((n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff) / 1073741824.0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Hj. Malthaner's routine included 2 different noise smoothing methods.
 | 
						|
 * We now use the "raw" int_noise one.
 | 
						|
 * However, it may be useful to move to the other routine in future.
 | 
						|
 * So it is included too.
 | 
						|
 */
 | 
						|
static double smoothed_noise(const int x, const int y, const int prime)
 | 
						|
{
 | 
						|
#if 0
 | 
						|
	/* A hilly world (four corner smooth) */
 | 
						|
	const double sides = int_noise(x - 1, y) + int_noise(x + 1, y) + int_noise(x, y - 1) + int_noise(x, y + 1);
 | 
						|
	const double center  =  int_noise(x, y);
 | 
						|
	return (sides + sides + center * 4) / 8.0;
 | 
						|
#endif
 | 
						|
 | 
						|
	/* This gives very hilly world */
 | 
						|
	return int_noise(x, y, prime);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * This routine determines the interpolated value between a and b
 | 
						|
 */
 | 
						|
static inline double linear_interpolate(const double a, const double b, const double x)
 | 
						|
{
 | 
						|
	return a + x * (b - a);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * This routine returns the smoothed interpolated noise for an x and y, using
 | 
						|
 * the values from the surrounding positions.
 | 
						|
 */
 | 
						|
static double interpolated_noise(const double x, const double y, const int prime)
 | 
						|
{
 | 
						|
	const int integer_X = (int)x;
 | 
						|
	const int integer_Y = (int)y;
 | 
						|
 | 
						|
	const double fractional_X = x - (double)integer_X;
 | 
						|
	const double fractional_Y = y - (double)integer_Y;
 | 
						|
 | 
						|
	const double v1 = smoothed_noise(integer_X,     integer_Y,     prime);
 | 
						|
	const double v2 = smoothed_noise(integer_X + 1, integer_Y,     prime);
 | 
						|
	const double v3 = smoothed_noise(integer_X,     integer_Y + 1, prime);
 | 
						|
	const double v4 = smoothed_noise(integer_X + 1, integer_Y + 1, prime);
 | 
						|
 | 
						|
	const double i1 = linear_interpolate(v1, v2, fractional_X);
 | 
						|
	const double i2 = linear_interpolate(v3, v4, fractional_X);
 | 
						|
 | 
						|
	return linear_interpolate(i1, i2, fractional_Y);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * This is a similar function to the main perlin noise calculation, but uses
 | 
						|
 * the value p passed as a parameter rather than selected from the predefined
 | 
						|
 * sequences. as you can guess by its title, i use this to create the indented
 | 
						|
 * coastline, which is just another perlin sequence.
 | 
						|
 */
 | 
						|
static double perlin_coast_noise_2D(const double x, const double y, const double p, const int prime)
 | 
						|
{
 | 
						|
	double total = 0.0;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < 6; i++) {
 | 
						|
		const double frequency = (double)(1 << i);
 | 
						|
		const double amplitude = pow(p, (double)i);
 | 
						|
 | 
						|
		total += interpolated_noise((x * frequency) / 64.0, (y * frequency) / 64.0, prime) * amplitude;
 | 
						|
	}
 | 
						|
 | 
						|
	return total;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/** A small helper function to initialize the terrain */
 | 
						|
static void TgenSetTileHeight(TileIndex tile, int height)
 | 
						|
{
 | 
						|
	SetTileHeight(tile, height);
 | 
						|
 | 
						|
	/* Only clear the tiles within the map area. */
 | 
						|
	if (TileX(tile) != MapMaxX() && TileY(tile) != MapMaxY() &&
 | 
						|
			(!_settings_game.construction.freeform_edges || (TileX(tile) != 0 && TileY(tile) != 0))) {
 | 
						|
		MakeClear(tile, CLEAR_GRASS, 3);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * The main new land generator using Perlin noise. Desert landscape is handled
 | 
						|
 * different to all others to give a desert valley between two high mountains.
 | 
						|
 * Clearly if a low height terrain (flat/very flat) is chosen, then the tropic
 | 
						|
 * areas wont be high enough, and there will be very little tropic on the map.
 | 
						|
 * Thus Tropic works best on Hilly or Mountainous.
 | 
						|
 */
 | 
						|
void GenerateTerrainPerlin()
 | 
						|
{
 | 
						|
	uint x, y;
 | 
						|
 | 
						|
	if (!AllocHeightMap()) return;
 | 
						|
	GenerateWorldSetAbortCallback(FreeHeightMap);
 | 
						|
 | 
						|
	HeightMapGenerate();
 | 
						|
 | 
						|
	IncreaseGeneratingWorldProgress(GWP_LANDSCAPE);
 | 
						|
 | 
						|
	HeightMapNormalize();
 | 
						|
 | 
						|
	IncreaseGeneratingWorldProgress(GWP_LANDSCAPE);
 | 
						|
 | 
						|
	/* First make sure the tiles at the north border are void tiles if needed. */
 | 
						|
	if (_settings_game.construction.freeform_edges) {
 | 
						|
		for (y = 0; y < _height_map.size_y - 1; y++) MakeVoid(_height_map.size_x * y);
 | 
						|
		for (x = 0; x < _height_map.size_x;     x++) MakeVoid(x);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Transfer height map into OTTD map */
 | 
						|
	for (y = 0; y < _height_map.size_y; y++) {
 | 
						|
		for (x = 0; x < _height_map.size_x; x++) {
 | 
						|
			int height = H2I(_height_map.height(x, y));
 | 
						|
			if (height < 0) height = 0;
 | 
						|
			if (height > 15) height = 15;
 | 
						|
			TgenSetTileHeight(TileXY(x, y), height);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	IncreaseGeneratingWorldProgress(GWP_LANDSCAPE);
 | 
						|
 | 
						|
	FreeHeightMap();
 | 
						|
	GenerateWorldSetAbortCallback(NULL);
 | 
						|
}
 |