371 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			371 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /* $Id$ */
 | |
| 
 | |
| /*
 | |
|  * This file is part of OpenTTD.
 | |
|  * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
 | |
|  * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 | |
|  * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| /** @file map.cpp Base functions related to the map and distances on them. */
 | |
| 
 | |
| #include "stdafx.h"
 | |
| #include "debug.h"
 | |
| #include "core/alloc_func.hpp"
 | |
| #include "core/math_func.hpp"
 | |
| #include "tile_map.h"
 | |
| 
 | |
| #if defined(_MSC_VER)
 | |
| /* Why the hell is that not in all MSVC headers?? */
 | |
| extern "C" _CRTIMP void __cdecl _assert(void *, void *, unsigned);
 | |
| #endif
 | |
| 
 | |
| uint _map_log_x;     ///< 2^_map_log_x == _map_size_x
 | |
| uint _map_log_y;     ///< 2^_map_log_y == _map_size_y
 | |
| uint _map_size_x;    ///< Size of the map along the X
 | |
| uint _map_size_y;    ///< Size of the map along the Y
 | |
| uint _map_size;      ///< The number of tiles on the map
 | |
| uint _map_tile_mask; ///< _map_size - 1 (to mask the mapsize)
 | |
| 
 | |
| Tile *_m = NULL;          ///< Tiles of the map
 | |
| TileExtended *_me = NULL; ///< Extended Tiles of the map
 | |
| 
 | |
| 
 | |
| /*!
 | |
|  * (Re)allocates a map with the given dimension
 | |
|  * @param size_x the width of the map along the NE/SW edge
 | |
|  * @param size_y the 'height' of the map along the SE/NW edge
 | |
|  */
 | |
| void AllocateMap(uint size_x, uint size_y)
 | |
| {
 | |
| 	/* Make sure that the map size is within the limits and that
 | |
| 	 * size of both axes is a power of 2. */
 | |
| 	if (!IsInsideMM(size_x, MIN_MAP_SIZE, MAX_MAP_SIZE + 1) ||
 | |
| 			!IsInsideMM(size_y, MIN_MAP_SIZE, MAX_MAP_SIZE + 1) ||
 | |
| 			(size_x & (size_x - 1)) != 0 ||
 | |
| 			(size_y & (size_y - 1)) != 0)
 | |
| 		error("Invalid map size");
 | |
| 
 | |
| 	DEBUG(map, 1, "Allocating map of size %dx%d", size_x, size_y);
 | |
| 
 | |
| 	_map_log_x = FindFirstBit(size_x);
 | |
| 	_map_log_y = FindFirstBit(size_y);
 | |
| 	_map_size_x = size_x;
 | |
| 	_map_size_y = size_y;
 | |
| 	_map_size = size_x * size_y;
 | |
| 	_map_tile_mask = _map_size - 1;
 | |
| 
 | |
| 	free(_m);
 | |
| 	free(_me);
 | |
| 
 | |
| 	_m = CallocT<Tile>(_map_size);
 | |
| 	_me = CallocT<TileExtended>(_map_size);
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef _DEBUG
 | |
| TileIndex TileAdd(TileIndex tile, TileIndexDiff add,
 | |
| 	const char *exp, const char *file, int line)
 | |
| {
 | |
| 	int dx;
 | |
| 	int dy;
 | |
| 	uint x;
 | |
| 	uint y;
 | |
| 
 | |
| 	dx = add & MapMaxX();
 | |
| 	if (dx >= (int)MapSizeX() / 2) dx -= MapSizeX();
 | |
| 	dy = (add - dx) / (int)MapSizeX();
 | |
| 
 | |
| 	x = TileX(tile) + dx;
 | |
| 	y = TileY(tile) + dy;
 | |
| 
 | |
| 	if (x >= MapSizeX() || y >= MapSizeY()) {
 | |
| 		char buf[512];
 | |
| 
 | |
| 		snprintf(buf, lengthof(buf), "TILE_ADD(%s) when adding 0x%.4X and 0x%.4X failed",
 | |
| 			exp, tile, add);
 | |
| #if !defined(_MSC_VER) || defined(WINCE)
 | |
| 		fprintf(stderr, "%s:%d %s\n", file, line, buf);
 | |
| #else
 | |
| 		_assert(buf, (char*)file, line);
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	assert(TileXY(x, y) == TILE_MASK(tile + add));
 | |
| 
 | |
| 	return TileXY(x, y);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*!
 | |
|  * This function checks if we add addx/addy to tile, if we
 | |
|  * do wrap around the edges. For example, tile = (10,2) and
 | |
|  * addx = +3 and addy = -4. This function will now return
 | |
|  * INVALID_TILE, because the y is wrapped. This is needed in
 | |
|  * for example, farmland. When the tile is not wrapped,
 | |
|  * the result will be tile + TileDiffXY(addx, addy)
 | |
|  *
 | |
|  * @param tile the 'starting' point of the adding
 | |
|  * @param addx the amount of tiles in the X direction to add
 | |
|  * @param addy the amount of tiles in the Y direction to add
 | |
|  * @return translated tile, or INVALID_TILE when it would've wrapped.
 | |
|  */
 | |
| TileIndex TileAddWrap(TileIndex tile, int addx, int addy)
 | |
| {
 | |
| 	uint x = TileX(tile) + addx;
 | |
| 	uint y = TileY(tile) + addy;
 | |
| 
 | |
| 	/* Disallow void tiles at the north border. */
 | |
| 	if (_settings_game.construction.freeform_edges && (x == 0 || y == 0)) return INVALID_TILE;
 | |
| 
 | |
| 	/* Are we about to wrap? */
 | |
| 	if (x < MapMaxX() && y < MapMaxY()) return tile + TileDiffXY(addx, addy);
 | |
| 
 | |
| 	return INVALID_TILE;
 | |
| }
 | |
| 
 | |
| /** 'Lookup table' for tile offsets given a DiagDirection */
 | |
| extern const TileIndexDiffC _tileoffs_by_diagdir[] = {
 | |
| 	{-1,  0}, ///< DIAGDIR_NE
 | |
| 	{ 0,  1}, ///< DIAGDIR_SE
 | |
| 	{ 1,  0}, ///< DIAGDIR_SW
 | |
| 	{ 0, -1}  ///< DIAGDIR_NW
 | |
| };
 | |
| 
 | |
| /** 'Lookup table' for tile offsets given a Direction */
 | |
| extern const TileIndexDiffC _tileoffs_by_dir[] = {
 | |
| 	{-1, -1}, ///< DIR_N
 | |
| 	{-1,  0}, ///< DIR_NE
 | |
| 	{-1,  1}, ///< DIR_E
 | |
| 	{ 0,  1}, ///< DIR_SE
 | |
| 	{ 1,  1}, ///< DIR_S
 | |
| 	{ 1,  0}, ///< DIR_SW
 | |
| 	{ 1, -1}, ///< DIR_W
 | |
| 	{ 0, -1}  ///< DIR_NW
 | |
| };
 | |
| 
 | |
| /*!
 | |
|  * Gets the Manhattan distance between the two given tiles.
 | |
|  * The Manhattan distance is the sum of the delta of both the
 | |
|  * X and Y component.
 | |
|  * Also known as L1-Norm
 | |
|  * @param t0 the start tile
 | |
|  * @param t1 the end tile
 | |
|  * @return the distance
 | |
|  */
 | |
| uint DistanceManhattan(TileIndex t0, TileIndex t1)
 | |
| {
 | |
| 	const uint dx = Delta(TileX(t0), TileX(t1));
 | |
| 	const uint dy = Delta(TileY(t0), TileY(t1));
 | |
| 	return dx + dy;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*!
 | |
|  * Gets the 'Square' distance between the two given tiles.
 | |
|  * The 'Square' distance is the square of the shortest (straight line)
 | |
|  * distance between the two tiles.
 | |
|  * Also known as euclidian- or L2-Norm squared.
 | |
|  * @param t0 the start tile
 | |
|  * @param t1 the end tile
 | |
|  * @return the distance
 | |
|  */
 | |
| uint DistanceSquare(TileIndex t0, TileIndex t1)
 | |
| {
 | |
| 	const int dx = TileX(t0) - TileX(t1);
 | |
| 	const int dy = TileY(t0) - TileY(t1);
 | |
| 	return dx * dx + dy * dy;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*!
 | |
|  * Gets the biggest distance component (x or y) between the two given tiles.
 | |
|  * Also known as L-Infinity-Norm.
 | |
|  * @param t0 the start tile
 | |
|  * @param t1 the end tile
 | |
|  * @return the distance
 | |
|  */
 | |
| uint DistanceMax(TileIndex t0, TileIndex t1)
 | |
| {
 | |
| 	const uint dx = Delta(TileX(t0), TileX(t1));
 | |
| 	const uint dy = Delta(TileY(t0), TileY(t1));
 | |
| 	return max(dx, dy);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*!
 | |
|  * Gets the biggest distance component (x or y) between the two given tiles
 | |
|  * plus the Manhattan distance, i.e. two times the biggest distance component
 | |
|  * and once the smallest component.
 | |
|  * @param t0 the start tile
 | |
|  * @param t1 the end tile
 | |
|  * @return the distance
 | |
|  */
 | |
| uint DistanceMaxPlusManhattan(TileIndex t0, TileIndex t1)
 | |
| {
 | |
| 	const uint dx = Delta(TileX(t0), TileX(t1));
 | |
| 	const uint dy = Delta(TileY(t0), TileY(t1));
 | |
| 	return dx > dy ? 2 * dx + dy : 2 * dy + dx;
 | |
| }
 | |
| 
 | |
| /*!
 | |
|  * Param the minimum distance to an edge
 | |
|  * @param tile the tile to get the distance from
 | |
|  * @return the distance from the edge in tiles
 | |
|  */
 | |
| uint DistanceFromEdge(TileIndex tile)
 | |
| {
 | |
| 	const uint xl = TileX(tile);
 | |
| 	const uint yl = TileY(tile);
 | |
| 	const uint xh = MapSizeX() - 1 - xl;
 | |
| 	const uint yh = MapSizeY() - 1 - yl;
 | |
| 	const uint minl = min(xl, yl);
 | |
| 	const uint minh = min(xh, yh);
 | |
| 	return min(minl, minh);
 | |
| }
 | |
| 
 | |
| /*!
 | |
|  * Function performing a search around a center tile and going outward, thus in circle.
 | |
|  * Although it really is a square search...
 | |
|  * Every tile will be tested by means of the callback function proc,
 | |
|  * which will determine if yes or no the given tile meets criteria of search.
 | |
|  * @param tile to start the search from. Upon completion, it will return the tile matching the search
 | |
|  * @param size: number of tiles per side of the desired search area
 | |
|  * @param proc: callback testing function pointer.
 | |
|  * @param user_data to be passed to the callback function. Depends on the implementation
 | |
|  * @return result of the search
 | |
|  * @pre proc != NULL
 | |
|  * @pre size > 0
 | |
|  */
 | |
| bool CircularTileSearch(TileIndex *tile, uint size, TestTileOnSearchProc proc, void *user_data)
 | |
| {
 | |
| 	assert(proc != NULL);
 | |
| 	assert(size > 0);
 | |
| 
 | |
| 	if (size % 2 == 1) {
 | |
| 		/* If the length of the side is uneven, the center has to be checked
 | |
| 		 * separately, as the pattern of uneven sides requires to go around the center */
 | |
| 		if (proc(*tile, user_data)) return true;
 | |
| 
 | |
| 		/* If tile test is not successful, get one tile up,
 | |
| 		 * ready for a test in first circle around center tile */
 | |
| 		*tile = TILE_ADD(*tile, TileOffsByDir(DIR_N));
 | |
| 		return CircularTileSearch(tile, size / 2, 1, 1, proc, user_data);
 | |
| 	} else {
 | |
| 		return CircularTileSearch(tile, size / 2, 0, 0, proc, user_data);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*!
 | |
|  * Generalized circular search allowing for rectangles and a hole.
 | |
|  * Function performing a search around a center rectangle and going outward.
 | |
|  * The center rectangle is left out from the search. To do a rectangular search
 | |
|  * without a hole, set either h or w to zero.
 | |
|  * Every tile will be tested by means of the callback function proc,
 | |
|  * which will determine if yes or no the given tile meets criteria of search.
 | |
|  * @param tile to start the search from. Upon completion, it will return the tile matching the search.
 | |
|  *  This tile should be directly north of the hole (if any).
 | |
|  * @param radius How many tiles to search outwards. Note: This is a radius and thus different
 | |
|  *                from the size parameter of the other CircularTileSearch function, which is a diameter.
 | |
|  * @param w the width of the inner rectangle
 | |
|  * @param h the height of the inner rectangle
 | |
|  * @param proc callback testing function pointer.
 | |
|  * @param user_data to be passed to the callback function. Depends on the implementation
 | |
|  * @return result of the search
 | |
|  * @pre proc != NULL
 | |
|  * @pre radius > 0
 | |
|  */
 | |
| bool CircularTileSearch(TileIndex *tile, uint radius, uint w, uint h, TestTileOnSearchProc proc, void *user_data)
 | |
| {
 | |
| 	assert(proc != NULL);
 | |
| 	assert(radius > 0);
 | |
| 
 | |
| 	uint x = TileX(*tile) + w + 1;
 | |
| 	uint y = TileY(*tile);
 | |
| 
 | |
| 	const uint extent[DIAGDIR_END] = { w, h, w, h };
 | |
| 
 | |
| 	for (uint n = 0; n < radius; n++) {
 | |
| 		for (DiagDirection dir = DIAGDIR_BEGIN; dir < DIAGDIR_END; dir++) {
 | |
| 			/* Is the tile within the map? */
 | |
| 			for (uint j = extent[dir] + n * 2 + 1; j != 0; j--) {
 | |
| 				if (x < MapSizeX() && y < MapSizeY()) {
 | |
| 					TileIndex t = TileXY(x, y);
 | |
| 					/* Is the callback successful? */
 | |
| 					if (proc(t, user_data)) {
 | |
| 						/* Stop the search */
 | |
| 						*tile = t;
 | |
| 						return true;
 | |
| 					}
 | |
| 				}
 | |
| 
 | |
| 				/* Step to the next 'neighbour' in the circular line */
 | |
| 				x += _tileoffs_by_diagdir[dir].x;
 | |
| 				y += _tileoffs_by_diagdir[dir].y;
 | |
| 			}
 | |
| 		}
 | |
| 		/* Jump to next circle to test */
 | |
| 		x += _tileoffs_by_dir[DIR_W].x;
 | |
| 		y += _tileoffs_by_dir[DIR_W].y;
 | |
| 	}
 | |
| 
 | |
| 	*tile = INVALID_TILE;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*!
 | |
|  * Finds the distance for the closest tile with water/land given a tile
 | |
|  * @param tile  the tile to find the distance too
 | |
|  * @param water whether to find water or land
 | |
|  * @return distance to nearest water (max 0x7F) / land (max 0x1FF; 0x200 if there is no land)
 | |
|  * @note FAILS when an industry should be seen as water
 | |
|  */
 | |
| uint GetClosestWaterDistance(TileIndex tile, bool water)
 | |
| {
 | |
| 	if (IsTileType(tile, MP_WATER) == water) return 0;
 | |
| 
 | |
| 	uint max_dist = water ? 0x7F : 0x200;
 | |
| 
 | |
| 	int x = TileX(tile);
 | |
| 	int y = TileY(tile);
 | |
| 
 | |
| 	uint max_x = MapMaxX();
 | |
| 	uint max_y = MapMaxY();
 | |
| 	uint min_xy = _settings_game.construction.freeform_edges ? 1 : 0;
 | |
| 
 | |
| 	/* go in a 'spiral' with increasing manhattan distance in each iteration */
 | |
| 	for (uint dist = 1; dist < max_dist; dist++) {
 | |
| 		/* next 'diameter' */
 | |
| 		y--;
 | |
| 
 | |
| 		/* going counter-clockwise around this square */
 | |
| 		for (DiagDirection dir = DIAGDIR_BEGIN; dir < DIAGDIR_END; dir++) {
 | |
| 			static const int8 ddx[DIAGDIR_END] = { -1,  1,  1, -1};
 | |
| 			static const int8 ddy[DIAGDIR_END] = {  1,  1, -1, -1};
 | |
| 
 | |
| 			int dx = ddx[dir];
 | |
| 			int dy = ddy[dir];
 | |
| 
 | |
| 			/* each side of this square has length 'dist' */
 | |
| 			for (uint a = 0; a < dist; a++) {
 | |
| 				/* MP_VOID tiles are not checked (interval is [min; max) for IsInsideMM())*/
 | |
| 				if (IsInsideMM(x, min_xy, max_x) && IsInsideMM(y, min_xy, max_y)) {
 | |
| 					TileIndex t = TileXY(x, y);
 | |
| 					if (IsTileType(t, MP_WATER) == water) return dist;
 | |
| 				}
 | |
| 				x += dx;
 | |
| 				y += dy;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!water) {
 | |
| 		/* no land found - is this a water-only map? */
 | |
| 		for (TileIndex t = 0; t < MapSize(); t++) {
 | |
| 			if (!IsTileType(t, MP_VOID) && !IsTileType(t, MP_WATER)) return 0x1FF;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return max_dist;
 | |
| }
 | 
