571 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			571 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /* $Id$ */
 | |
| 
 | |
| /** @file queue.cpp Implementation of the Queue/Hash. */
 | |
| 
 | |
| #include "stdafx.h"
 | |
| #include "queue.h"
 | |
| #include "core/alloc_func.hpp"
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Insertion Sorter
 | |
|  */
 | |
| 
 | |
| static void InsSort_Clear(Queue *q, bool free_values)
 | |
| {
 | |
| 	InsSortNode *node = q->data.inssort.first;
 | |
| 	InsSortNode *prev;
 | |
| 
 | |
| 	while (node != NULL) {
 | |
| 		if (free_values) free(node->item);
 | |
| 		prev = node;
 | |
| 		node = node->next;
 | |
| 		free(prev);
 | |
| 	}
 | |
| 	q->data.inssort.first = NULL;
 | |
| }
 | |
| 
 | |
| static void InsSort_Free(Queue *q, bool free_values)
 | |
| {
 | |
| 	q->clear(q, free_values);
 | |
| }
 | |
| 
 | |
| static bool InsSort_Push(Queue *q, void *item, int priority)
 | |
| {
 | |
| 	InsSortNode *newnode = MallocT<InsSortNode>(1);
 | |
| 
 | |
| 	newnode->item = item;
 | |
| 	newnode->priority = priority;
 | |
| 	if (q->data.inssort.first == NULL ||
 | |
| 			q->data.inssort.first->priority >= priority) {
 | |
| 		newnode->next = q->data.inssort.first;
 | |
| 		q->data.inssort.first = newnode;
 | |
| 	} else {
 | |
| 		InsSortNode *node = q->data.inssort.first;
 | |
| 		while (node != NULL) {
 | |
| 			if (node->next == NULL || node->next->priority >= priority) {
 | |
| 				newnode->next = node->next;
 | |
| 				node->next = newnode;
 | |
| 				break;
 | |
| 			}
 | |
| 			node = node->next;
 | |
| 		}
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void *InsSort_Pop(Queue *q)
 | |
| {
 | |
| 	InsSortNode *node = q->data.inssort.first;
 | |
| 	void *result;
 | |
| 
 | |
| 	if (node == NULL) return NULL;
 | |
| 	result = node->item;
 | |
| 	q->data.inssort.first = q->data.inssort.first->next;
 | |
| 	assert(q->data.inssort.first == NULL || q->data.inssort.first->priority >= node->priority);
 | |
| 	free(node);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static bool InsSort_Delete(Queue *q, void *item, int priority)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| void init_InsSort(Queue *q)
 | |
| {
 | |
| 	q->push = InsSort_Push;
 | |
| 	q->pop = InsSort_Pop;
 | |
| 	q->del = InsSort_Delete;
 | |
| 	q->clear = InsSort_Clear;
 | |
| 	q->free = InsSort_Free;
 | |
| 	q->data.inssort.first = NULL;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Binary Heap
 | |
|  * For information, see: http://www.policyalmanac.org/games/binaryHeaps.htm
 | |
|  */
 | |
| 
 | |
| #define BINARY_HEAP_BLOCKSIZE (1 << BINARY_HEAP_BLOCKSIZE_BITS)
 | |
| #define BINARY_HEAP_BLOCKSIZE_MASK (BINARY_HEAP_BLOCKSIZE - 1)
 | |
| 
 | |
| /* To make our life easy, we make the next define
 | |
|  *  Because Binary Heaps works with array from 1 to n,
 | |
|  *  and C with array from 0 to n-1, and we don't like typing
 | |
|  *  q->data.binaryheap.elements[i - 1] every time, we use this define. */
 | |
| #define BIN_HEAP_ARR(i) q->data.binaryheap.elements[((i) - 1) >> BINARY_HEAP_BLOCKSIZE_BITS][((i) - 1) & BINARY_HEAP_BLOCKSIZE_MASK]
 | |
| 
 | |
| static void BinaryHeap_Clear(Queue *q, bool free_values)
 | |
| {
 | |
| 	/* Free all items if needed and free all but the first blocks of memory */
 | |
| 	uint i;
 | |
| 	uint j;
 | |
| 
 | |
| 	for (i = 0; i < q->data.binaryheap.blocks; i++) {
 | |
| 		if (q->data.binaryheap.elements[i] == NULL) {
 | |
| 			/* No more allocated blocks */
 | |
| 			break;
 | |
| 		}
 | |
| 		/* For every allocated block */
 | |
| 		if (free_values) {
 | |
| 			for (j = 0; j < (1 << BINARY_HEAP_BLOCKSIZE_BITS); j++) {
 | |
| 				/* For every element in the block */
 | |
| 				if ((q->data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS) == i &&
 | |
| 						(q->data.binaryheap.size & BINARY_HEAP_BLOCKSIZE_MASK) == j) {
 | |
| 					break; // We're past the last element
 | |
| 				}
 | |
| 				free(q->data.binaryheap.elements[i][j].item);
 | |
| 			}
 | |
| 		}
 | |
| 		if (i != 0) {
 | |
| 			/* Leave the first block of memory alone */
 | |
| 			free(q->data.binaryheap.elements[i]);
 | |
| 			q->data.binaryheap.elements[i] = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	q->data.binaryheap.size = 0;
 | |
| 	q->data.binaryheap.blocks = 1;
 | |
| }
 | |
| 
 | |
| static void BinaryHeap_Free(Queue *q, bool free_values)
 | |
| {
 | |
| 	uint i;
 | |
| 
 | |
| 	q->clear(q, free_values);
 | |
| 	for (i = 0; i < q->data.binaryheap.blocks; i++) {
 | |
| 		if (q->data.binaryheap.elements[i] == NULL) break;
 | |
| 		free(q->data.binaryheap.elements[i]);
 | |
| 	}
 | |
| 	free(q->data.binaryheap.elements);
 | |
| }
 | |
| 
 | |
| static bool BinaryHeap_Push(Queue *q, void *item, int priority)
 | |
| {
 | |
| #ifdef QUEUE_DEBUG
 | |
| 	printf("[BinaryHeap] Pushing an element. There are %d elements left\n", q->data.binaryheap.size);
 | |
| #endif
 | |
| 
 | |
| 	if (q->data.binaryheap.size == q->data.binaryheap.max_size) return false;
 | |
| 	assert(q->data.binaryheap.size < q->data.binaryheap.max_size);
 | |
| 
 | |
| 	if (q->data.binaryheap.elements[q->data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS] == NULL) {
 | |
| 		/* The currently allocated blocks are full, allocate a new one */
 | |
| 		assert((q->data.binaryheap.size & BINARY_HEAP_BLOCKSIZE_MASK) == 0);
 | |
| 		q->data.binaryheap.elements[q->data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS] = MallocT<BinaryHeapNode>(BINARY_HEAP_BLOCKSIZE);
 | |
| 		q->data.binaryheap.blocks++;
 | |
| #ifdef QUEUE_DEBUG
 | |
| 		printf("[BinaryHeap] Increasing size of elements to %d nodes\n", q->data.binaryheap.blocks *  BINARY_HEAP_BLOCKSIZE);
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	/* Add the item at the end of the array */
 | |
| 	BIN_HEAP_ARR(q->data.binaryheap.size + 1).priority = priority;
 | |
| 	BIN_HEAP_ARR(q->data.binaryheap.size + 1).item = item;
 | |
| 	q->data.binaryheap.size++;
 | |
| 
 | |
| 	/* Now we are going to check where it belongs. As long as the parent is
 | |
| 	 * bigger, we switch with the parent */
 | |
| 	{
 | |
| 		BinaryHeapNode temp;
 | |
| 		int i;
 | |
| 		int j;
 | |
| 
 | |
| 		i = q->data.binaryheap.size;
 | |
| 		while (i > 1) {
 | |
| 			/* Get the parent of this object (divide by 2) */
 | |
| 			j = i / 2;
 | |
| 			/* Is the parent bigger then the current, switch them */
 | |
| 			if (BIN_HEAP_ARR(i).priority <= BIN_HEAP_ARR(j).priority) {
 | |
| 				temp = BIN_HEAP_ARR(j);
 | |
| 				BIN_HEAP_ARR(j) = BIN_HEAP_ARR(i);
 | |
| 				BIN_HEAP_ARR(i) = temp;
 | |
| 				i = j;
 | |
| 			} else {
 | |
| 				/* It is not, we're done! */
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool BinaryHeap_Delete(Queue *q, void *item, int priority)
 | |
| {
 | |
| 	uint i = 0;
 | |
| 
 | |
| #ifdef QUEUE_DEBUG
 | |
| 	printf("[BinaryHeap] Deleting an element. There are %d elements left\n", q->data.binaryheap.size);
 | |
| #endif
 | |
| 
 | |
| 	/* First, we try to find the item.. */
 | |
| 	do {
 | |
| 		if (BIN_HEAP_ARR(i + 1).item == item) break;
 | |
| 		i++;
 | |
| 	} while (i < q->data.binaryheap.size);
 | |
| 	/* We did not find the item, so we return false */
 | |
| 	if (i == q->data.binaryheap.size) return false;
 | |
| 
 | |
| 	/* Now we put the last item over the current item while decreasing the size of the elements */
 | |
| 	q->data.binaryheap.size--;
 | |
| 	BIN_HEAP_ARR(i + 1) = BIN_HEAP_ARR(q->data.binaryheap.size + 1);
 | |
| 
 | |
| 	/* Now the only thing we have to do, is resort it..
 | |
| 	 * On place i there is the item to be sorted.. let's start there */
 | |
| 	{
 | |
| 		uint j;
 | |
| 		BinaryHeapNode temp;
 | |
| 		/* Because of the fact that Binary Heap uses array from 1 to n, we need to
 | |
| 		 * increase i by 1
 | |
| 		 */
 | |
| 		i++;
 | |
| 
 | |
| 		for (;;) {
 | |
| 			j = i;
 | |
| 			/* Check if we have 2 childs */
 | |
| 			if (2 * j + 1 <= q->data.binaryheap.size) {
 | |
| 				/* Is this child smaller than the parent? */
 | |
| 				if (BIN_HEAP_ARR(j).priority >= BIN_HEAP_ARR(2 * j).priority) i = 2 * j;
 | |
| 				/* Yes, we _need_ to use i here, not j, because we want to have the smallest child
 | |
| 				 *  This way we get that straight away! */
 | |
| 				if (BIN_HEAP_ARR(i).priority >= BIN_HEAP_ARR(2 * j + 1).priority) i = 2 * j + 1;
 | |
| 			/* Do we have one child? */
 | |
| 			} else if (2 * j <= q->data.binaryheap.size) {
 | |
| 				if (BIN_HEAP_ARR(j).priority >= BIN_HEAP_ARR(2 * j).priority) i = 2 * j;
 | |
| 			}
 | |
| 
 | |
| 			/* One of our childs is smaller than we are, switch */
 | |
| 			if (i != j) {
 | |
| 				temp = BIN_HEAP_ARR(j);
 | |
| 				BIN_HEAP_ARR(j) = BIN_HEAP_ARR(i);
 | |
| 				BIN_HEAP_ARR(i) = temp;
 | |
| 			} else {
 | |
| 				/* None of our childs is smaller, so we stay here.. stop :) */
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void *BinaryHeap_Pop(Queue *q)
 | |
| {
 | |
| 	void *result;
 | |
| 
 | |
| #ifdef QUEUE_DEBUG
 | |
| 	printf("[BinaryHeap] Popping an element. There are %d elements left\n", q->data.binaryheap.size);
 | |
| #endif
 | |
| 
 | |
| 	if (q->data.binaryheap.size == 0) return NULL;
 | |
| 
 | |
| 	/* The best item is always on top, so give that as result */
 | |
| 	result = BIN_HEAP_ARR(1).item;
 | |
| 	/* And now we should get rid of this item... */
 | |
| 	BinaryHeap_Delete(q, BIN_HEAP_ARR(1).item, BIN_HEAP_ARR(1).priority);
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| void init_BinaryHeap(Queue *q, uint max_size)
 | |
| {
 | |
| 	assert(q != NULL);
 | |
| 	q->push = BinaryHeap_Push;
 | |
| 	q->pop = BinaryHeap_Pop;
 | |
| 	q->del = BinaryHeap_Delete;
 | |
| 	q->clear = BinaryHeap_Clear;
 | |
| 	q->free = BinaryHeap_Free;
 | |
| 	q->data.binaryheap.max_size = max_size;
 | |
| 	q->data.binaryheap.size = 0;
 | |
| 	/* We malloc memory in block of BINARY_HEAP_BLOCKSIZE
 | |
| 	 *   It autosizes when it runs out of memory */
 | |
| 	q->data.binaryheap.elements = CallocT<BinaryHeapNode*>((max_size - 1) / BINARY_HEAP_BLOCKSIZE + 1);
 | |
| 	q->data.binaryheap.elements[0] = MallocT<BinaryHeapNode>(BINARY_HEAP_BLOCKSIZE);
 | |
| 	q->data.binaryheap.blocks = 1;
 | |
| #ifdef QUEUE_DEBUG
 | |
| 	printf("[BinaryHeap] Initial size of elements is %d nodes\n", BINARY_HEAP_BLOCKSIZE);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Because we don't want anyone else to bother with our defines */
 | |
| #undef BIN_HEAP_ARR
 | |
| 
 | |
| /*
 | |
|  * Hash
 | |
|  */
 | |
| 
 | |
| void init_Hash(Hash *h, Hash_HashProc *hash, uint num_buckets)
 | |
| {
 | |
| 	/* Allocate space for the Hash, the buckets and the bucket flags */
 | |
| 	uint i;
 | |
| 
 | |
| 	assert(h != NULL);
 | |
| #ifdef HASH_DEBUG
 | |
| 	debug("Allocated hash: %p", h);
 | |
| #endif
 | |
| 	h->hash = hash;
 | |
| 	h->size = 0;
 | |
| 	h->num_buckets = num_buckets;
 | |
| 	h->buckets = (HashNode*)MallocT<byte>(num_buckets * (sizeof(*h->buckets) + sizeof(*h->buckets_in_use)));
 | |
| #ifdef HASH_DEBUG
 | |
| 	debug("Buckets = %p", h->buckets);
 | |
| #endif
 | |
| 	h->buckets_in_use = (bool*)(h->buckets + num_buckets);
 | |
| 	for (i = 0; i < num_buckets; i++) h->buckets_in_use[i] = false;
 | |
| }
 | |
| 
 | |
| 
 | |
| void delete_Hash(Hash *h, bool free_values)
 | |
| {
 | |
| 	uint i;
 | |
| 
 | |
| 	/* Iterate all buckets */
 | |
| 	for (i = 0; i < h->num_buckets; i++) {
 | |
| 		if (h->buckets_in_use[i]) {
 | |
| 			HashNode *node;
 | |
| 
 | |
| 			/* Free the first value */
 | |
| 			if (free_values) free(h->buckets[i].value);
 | |
| 			node = h->buckets[i].next;
 | |
| 			while (node != NULL) {
 | |
| 				HashNode *prev = node;
 | |
| 
 | |
| 				node = node->next;
 | |
| 				/* Free the value */
 | |
| 				if (free_values) free(prev->value);
 | |
| 				/* Free the node */
 | |
| 				free(prev);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	free(h->buckets);
 | |
| 	/* No need to free buckets_in_use, it is always allocated in one
 | |
| 	 * malloc with buckets */
 | |
| #ifdef HASH_DEBUG
 | |
| 	debug("Freeing Hash: %p", h);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef HASH_STATS
 | |
| static void stat_Hash(const Hash *h)
 | |
| {
 | |
| 	uint used_buckets = 0;
 | |
| 	uint max_collision = 0;
 | |
| 	uint max_usage = 0;
 | |
| 	uint usage[200];
 | |
| 	uint i;
 | |
| 
 | |
| 	for (i = 0; i < lengthof(usage); i++) usage[i] = 0;
 | |
| 	for (i = 0; i < h->num_buckets; i++) {
 | |
| 		uint collision = 0;
 | |
| 		if (h->buckets_in_use[i]) {
 | |
| 			const HashNode *node;
 | |
| 
 | |
| 			used_buckets++;
 | |
| 			for (node = &h->buckets[i]; node != NULL; node = node->next) collision++;
 | |
| 			if (collision > max_collision) max_collision = collision;
 | |
| 		}
 | |
| 		if (collision >= lengthof(usage)) collision = lengthof(usage) - 1;
 | |
| 		usage[collision]++;
 | |
| 		if (collision > 0 && usage[collision] >= max_usage) {
 | |
| 			max_usage = usage[collision];
 | |
| 		}
 | |
| 	}
 | |
| 	printf(
 | |
| 		"---\n"
 | |
| 		"Hash size: %d\n"
 | |
| 		"Nodes used: %d\n"
 | |
| 		"Non empty buckets: %d\n"
 | |
| 		"Max collision: %d\n",
 | |
| 		h->num_buckets, h->size, used_buckets, max_collision
 | |
| 	);
 | |
| 	printf("{ ");
 | |
| 	for (i = 0; i <= max_collision; i++) {
 | |
| 		if (usage[i] > 0) {
 | |
| 			printf("%d:%d ", i, usage[i]);
 | |
| #if 0
 | |
| 			if (i > 0) {
 | |
| 				uint j;
 | |
| 
 | |
| 				for (j = 0; j < usage[i] * 160 / 800; j++) putchar('#');
 | |
| 			}
 | |
| 			printf("\n");
 | |
| #endif
 | |
| 		}
 | |
| 	}
 | |
| 	printf ("}\n");
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void clear_Hash(Hash *h, bool free_values)
 | |
| {
 | |
| 	uint i;
 | |
| 
 | |
| #ifdef HASH_STATS
 | |
| 	if (h->size > 2000) stat_Hash(h);
 | |
| #endif
 | |
| 
 | |
| 	/* Iterate all buckets */
 | |
| 	for (i = 0; i < h->num_buckets; i++) {
 | |
| 		if (h->buckets_in_use[i]) {
 | |
| 			HashNode *node;
 | |
| 
 | |
| 			h->buckets_in_use[i] = false;
 | |
| 			/* Free the first value */
 | |
| 			if (free_values) free(h->buckets[i].value);
 | |
| 			node = h->buckets[i].next;
 | |
| 			while (node != NULL) {
 | |
| 				HashNode *prev = node;
 | |
| 
 | |
| 				node = node->next;
 | |
| 				if (free_values) free(prev->value);
 | |
| 				free(prev);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	h->size = 0;
 | |
| }
 | |
| 
 | |
| /** Finds the node that that saves this key pair. If it is not
 | |
|  * found, returns NULL. If it is found, *prev is set to the
 | |
|  * node before the one found, or if the node found was the first in the bucket
 | |
|  * to NULL. If it is not found, *prev is set to the last HashNode in the
 | |
|  * bucket, or NULL if it is empty. prev can also be NULL, in which case it is
 | |
|  * not used for output.
 | |
|  */
 | |
| static HashNode *Hash_FindNode(const Hash *h, uint key1, uint key2, HashNode** prev_out)
 | |
| {
 | |
| 	uint hash = h->hash(key1, key2);
 | |
| 	HashNode *result = NULL;
 | |
| 
 | |
| #ifdef HASH_DEBUG
 | |
| 	debug("Looking for %u, %u", key1, key2);
 | |
| #endif
 | |
| 	/* Check if the bucket is empty */
 | |
| 	if (!h->buckets_in_use[hash]) {
 | |
| 		if (prev_out != NULL) *prev_out = NULL;
 | |
| 		result = NULL;
 | |
| 	/* Check the first node specially */
 | |
| 	} else if (h->buckets[hash].key1 == key1 && h->buckets[hash].key2 == key2) {
 | |
| 		/* Save the value */
 | |
| 		result = h->buckets + hash;
 | |
| 		if (prev_out != NULL) *prev_out = NULL;
 | |
| #ifdef HASH_DEBUG
 | |
| 		debug("Found in first node: %p", result);
 | |
| #endif
 | |
| 	/* Check all other nodes */
 | |
| 	} else {
 | |
| 		HashNode *prev = h->buckets + hash;
 | |
| 		HashNode *node;
 | |
| 
 | |
| 		for (node = prev->next; node != NULL; node = node->next) {
 | |
| 			if (node->key1 == key1 && node->key2 == key2) {
 | |
| 				/* Found it */
 | |
| 				result = node;
 | |
| #ifdef HASH_DEBUG
 | |
| 				debug("Found in other node: %p", result);
 | |
| #endif
 | |
| 				break;
 | |
| 			}
 | |
| 			prev = node;
 | |
| 		}
 | |
| 		if (prev_out != NULL) *prev_out = prev;
 | |
| 	}
 | |
| #ifdef HASH_DEBUG
 | |
| 	if (result == NULL) debug("Not found");
 | |
| #endif
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| void *Hash_Delete(Hash *h, uint key1, uint key2)
 | |
| {
 | |
| 	void *result;
 | |
| 	HashNode *prev; // Used as output var for below function call
 | |
| 	HashNode *node = Hash_FindNode(h, key1, key2, &prev);
 | |
| 
 | |
| 	if (node == NULL) {
 | |
| 		/* not found */
 | |
| 		result = NULL;
 | |
| 	} else if (prev == NULL) {
 | |
| 		/* It is in the first node, we can't free that one, so we free
 | |
| 		 * the next one instead (if there is any)*/
 | |
| 		/* Save the value */
 | |
| 		result = node->value;
 | |
| 		if (node->next != NULL) {
 | |
| 			HashNode *next = node->next;
 | |
| 			/* Copy the second to the first */
 | |
| 			*node = *next;
 | |
| 			/* Free the second */
 | |
| #ifndef NOFREE
 | |
| 			free(next);
 | |
| #endif
 | |
| 		} else {
 | |
| 			/* This was the last in this bucket
 | |
| 			 * Mark it as empty */
 | |
| 			uint hash = h->hash(key1, key2);
 | |
| 			h->buckets_in_use[hash] = false;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* It is in another node
 | |
| 		 * Save the value */
 | |
| 		result = node->value;
 | |
| 		/* Link previous and next nodes */
 | |
| 		prev->next = node->next;
 | |
| 		/* Free the node */
 | |
| #ifndef NOFREE
 | |
| 		free(node);
 | |
| #endif
 | |
| 	}
 | |
| 	if (result != NULL) h->size--;
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| 
 | |
| void *Hash_Set(Hash *h, uint key1, uint key2, void *value)
 | |
| {
 | |
| 	HashNode *prev;
 | |
| 	HashNode *node = Hash_FindNode(h, key1, key2, &prev);
 | |
| 
 | |
| 	if (node != NULL) {
 | |
| 		/* Found it */
 | |
| 		void *result = node->value;
 | |
| 
 | |
| 		node->value = value;
 | |
| 		return result;
 | |
| 	}
 | |
| 	/* It is not yet present, let's add it */
 | |
| 	if (prev == NULL) {
 | |
| 		/* The bucket is still empty */
 | |
| 		uint hash = h->hash(key1, key2);
 | |
| 		h->buckets_in_use[hash] = true;
 | |
| 		node = h->buckets + hash;
 | |
| 	} else {
 | |
| 		/* Add it after prev */
 | |
| 		node = MallocT<HashNode>(1);
 | |
| 		prev->next = node;
 | |
| 	}
 | |
| 	node->next = NULL;
 | |
| 	node->key1 = key1;
 | |
| 	node->key2 = key2;
 | |
| 	node->value = value;
 | |
| 	h->size++;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| void *Hash_Get(const Hash *h, uint key1, uint key2)
 | |
| {
 | |
| 	HashNode *node = Hash_FindNode(h, key1, key2, NULL);
 | |
| 
 | |
| #ifdef HASH_DEBUG
 | |
| 	debug("Found node: %p", node);
 | |
| #endif
 | |
| 	return (node != NULL) ? node->value : NULL;
 | |
| }
 | |
| 
 | |
| uint Hash_Size(const Hash *h)
 | |
| {
 | |
| 	return h->size;
 | |
| }
 | 
