298 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			298 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * This file is part of OpenTTD.
 | |
|  * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
 | |
|  * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 | |
|  * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| /** @file tilearea.cpp Handling of tile areas. */
 | |
| 
 | |
| #include "stdafx.h"
 | |
| 
 | |
| #include "tilearea_type.h"
 | |
| 
 | |
| #include "safeguards.h"
 | |
| 
 | |
| /**
 | |
|  * Construct this tile area based on two points.
 | |
|  * @param start the start of the area
 | |
|  * @param end   the end of the area
 | |
|  */
 | |
| OrthogonalTileArea::OrthogonalTileArea(TileIndex start, TileIndex end)
 | |
| {
 | |
| 	assert(start < Map::Size());
 | |
| 	assert(end < Map::Size());
 | |
| 
 | |
| 	uint sx = TileX(start);
 | |
| 	uint sy = TileY(start);
 | |
| 	uint ex = TileX(end);
 | |
| 	uint ey = TileY(end);
 | |
| 
 | |
| 	if (sx > ex) Swap(sx, ex);
 | |
| 	if (sy > ey) Swap(sy, ey);
 | |
| 
 | |
| 	this->tile = TileXY(sx, sy);
 | |
| 	this->w    = ex - sx + 1;
 | |
| 	this->h    = ey - sy + 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Add a single tile to a tile area; enlarge if needed.
 | |
|  * @param to_add The tile to add
 | |
|  */
 | |
| void OrthogonalTileArea::Add(TileIndex to_add)
 | |
| {
 | |
| 	if (this->tile == INVALID_TILE) {
 | |
| 		this->tile = to_add;
 | |
| 		this->w = 1;
 | |
| 		this->h = 1;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	uint sx = TileX(this->tile);
 | |
| 	uint sy = TileY(this->tile);
 | |
| 	uint ex = sx + this->w - 1;
 | |
| 	uint ey = sy + this->h - 1;
 | |
| 
 | |
| 	uint ax = TileX(to_add);
 | |
| 	uint ay = TileY(to_add);
 | |
| 
 | |
| 	sx = std::min(ax, sx);
 | |
| 	sy = std::min(ay, sy);
 | |
| 	ex = std::max(ax, ex);
 | |
| 	ey = std::max(ay, ey);
 | |
| 
 | |
| 	this->tile = TileXY(sx, sy);
 | |
| 	this->w    = ex - sx + 1;
 | |
| 	this->h    = ey - sy + 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Does this tile area intersect with another?
 | |
|  * @param ta the other tile area to check against.
 | |
|  * @return true if they intersect.
 | |
|  */
 | |
| bool OrthogonalTileArea::Intersects(const OrthogonalTileArea &ta) const
 | |
| {
 | |
| 	if (ta.w == 0 || this->w == 0) return false;
 | |
| 
 | |
| 	assert(ta.w != 0 && ta.h != 0 && this->w != 0 && this->h != 0);
 | |
| 
 | |
| 	uint left1   = TileX(this->tile);
 | |
| 	uint top1    = TileY(this->tile);
 | |
| 	uint right1  = left1 + this->w - 1;
 | |
| 	uint bottom1 = top1  + this->h - 1;
 | |
| 
 | |
| 	uint left2   = TileX(ta.tile);
 | |
| 	uint top2    = TileY(ta.tile);
 | |
| 	uint right2  = left2 + ta.w - 1;
 | |
| 	uint bottom2 = top2  + ta.h - 1;
 | |
| 
 | |
| 	return !(
 | |
| 			left2   > right1  ||
 | |
| 			right2  < left1   ||
 | |
| 			top2    > bottom1 ||
 | |
| 			bottom2 < top1
 | |
| 		);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Does this tile area contain a tile?
 | |
|  * @param tile Tile to test for.
 | |
|  * @return True if the tile is inside the area.
 | |
|  */
 | |
| bool OrthogonalTileArea::Contains(TileIndex tile) const
 | |
| {
 | |
| 	if (this->w == 0) return false;
 | |
| 
 | |
| 	assert(this->w != 0 && this->h != 0);
 | |
| 
 | |
| 	uint left   = TileX(this->tile);
 | |
| 	uint top    = TileY(this->tile);
 | |
| 	uint tile_x = TileX(tile);
 | |
| 	uint tile_y = TileY(tile);
 | |
| 
 | |
| 	return IsInsideBS(tile_x, left, this->w) && IsInsideBS(tile_y, top, this->h);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Expand a tile area by rad tiles in each direction, keeping within map bounds.
 | |
|  * @param rad Number of tiles to expand
 | |
|  * @return The OrthogonalTileArea.
 | |
|  */
 | |
| OrthogonalTileArea &OrthogonalTileArea::Expand(int rad)
 | |
| {
 | |
| 	int x = TileX(this->tile);
 | |
| 	int y = TileY(this->tile);
 | |
| 
 | |
| 	int sx = std::max<int>(x - rad, 0);
 | |
| 	int sy = std::max<int>(y - rad, 0);
 | |
| 	int ex = std::min<int>(x + this->w + rad, Map::SizeX());
 | |
| 	int ey = std::min<int>(y + this->h + rad, Map::SizeY());
 | |
| 
 | |
| 	this->tile = TileXY(sx, sy);
 | |
| 	this->w    = ex - sx;
 | |
| 	this->h    = ey - sy;
 | |
| 	return *this;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Clamp the tile area to map borders.
 | |
|  */
 | |
| void OrthogonalTileArea::ClampToMap()
 | |
| {
 | |
| 	assert(this->tile < Map::Size());
 | |
| 	this->w = std::min<int>(this->w, Map::SizeX() - TileX(this->tile));
 | |
| 	this->h = std::min<int>(this->h, Map::SizeY() - TileY(this->tile));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Returns an iterator to the beginning of the tile area.
 | |
|  * @return The OrthogonalTileIterator.
 | |
|  */
 | |
| OrthogonalTileIterator OrthogonalTileArea::begin() const
 | |
| {
 | |
| 	return OrthogonalTileIterator(*this);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Returns an iterator to the end of the tile area.
 | |
|  * @return The OrthogonalTileIterator.
 | |
|  */
 | |
| OrthogonalTileIterator OrthogonalTileArea::end() const
 | |
| {
 | |
| 	return OrthogonalTileIterator(OrthogonalTileArea());
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Create a diagonal tile area from two corners.
 | |
|  * @param start First corner of the area.
 | |
|  * @param end Second corner of the area.
 | |
|  */
 | |
| DiagonalTileArea::DiagonalTileArea(TileIndex start, TileIndex end) : tile(start)
 | |
| {
 | |
| 	assert(start < Map::Size());
 | |
| 	assert(end < Map::Size());
 | |
| 
 | |
| 	/* Unfortunately we can't find a new base and make all a and b positive because
 | |
| 	 * the new base might be a "flattened" corner where there actually is no single
 | |
| 	 * tile. If we try anyway the result is either inaccurate ("one off" half of the
 | |
| 	 * time) or the code gets much more complex;
 | |
| 	 *
 | |
| 	 * We also need to increment/decrement a and b here to have one-past-end semantics
 | |
| 	 * for a and b, just the way the orthogonal tile area does it for w and h. */
 | |
| 
 | |
| 	this->a = TileY(end) + TileX(end) - TileY(start) - TileX(start);
 | |
| 	this->b = TileY(end) - TileX(end) - TileY(start) + TileX(start);
 | |
| 	if (this->a > 0) {
 | |
| 		this->a++;
 | |
| 	} else {
 | |
| 		this->a--;
 | |
| 	}
 | |
| 
 | |
| 	if (this->b > 0) {
 | |
| 		this->b++;
 | |
| 	} else {
 | |
| 		this->b--;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Does this tile area contain a tile?
 | |
|  * @param tile Tile to test for.
 | |
|  * @return True if the tile is inside the area.
 | |
|  */
 | |
| bool DiagonalTileArea::Contains(TileIndex tile) const
 | |
| {
 | |
| 	int a = TileY(tile) + TileX(tile);
 | |
| 	int b = TileY(tile) - TileX(tile);
 | |
| 
 | |
| 	int start_a = TileY(this->tile) + TileX(this->tile);
 | |
| 	int start_b = TileY(this->tile) - TileX(this->tile);
 | |
| 
 | |
| 	int end_a = start_a + this->a;
 | |
| 	int end_b = start_b + this->b;
 | |
| 
 | |
| 	/* Swap if necessary, preserving the "one past end" semantics. */
 | |
| 	if (start_a > end_a) {
 | |
| 		int tmp = start_a;
 | |
| 		start_a = end_a + 1;
 | |
| 		end_a = tmp + 1;
 | |
| 	}
 | |
| 	if (start_b > end_b) {
 | |
| 		int tmp = start_b;
 | |
| 		start_b = end_b + 1;
 | |
| 		end_b = tmp + 1;
 | |
| 	}
 | |
| 
 | |
| 	return (a >= start_a && a < end_a && b >= start_b && b < end_b);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Move ourselves to the next tile in the rectangle on the map.
 | |
|  */
 | |
| TileIterator &DiagonalTileIterator::operator++()
 | |
| {
 | |
| 	assert(this->tile != INVALID_TILE);
 | |
| 
 | |
| 	/* Determine the next tile, while clipping at map borders */
 | |
| 	bool new_line = false;
 | |
| 	do {
 | |
| 		/* Iterate using the rotated coordinates. */
 | |
| 		if (this->a_max == 1 || this->a_max == -1) {
 | |
| 			/* Special case: Every second column has zero length, skip them completely */
 | |
| 			this->a_cur = 0;
 | |
| 			if (this->b_max > 0) {
 | |
| 				this->b_cur = std::min(this->b_cur + 2, this->b_max);
 | |
| 			} else {
 | |
| 				this->b_cur = std::max(this->b_cur - 2, this->b_max);
 | |
| 			}
 | |
| 		} else {
 | |
| 			/* Every column has at least one tile to process */
 | |
| 			if (this->a_max > 0) {
 | |
| 				this->a_cur += 2;
 | |
| 				new_line = this->a_cur >= this->a_max;
 | |
| 			} else {
 | |
| 				this->a_cur -= 2;
 | |
| 				new_line = this->a_cur <= this->a_max;
 | |
| 			}
 | |
| 			if (new_line) {
 | |
| 				/* offset of initial a_cur: one tile in the same direction as a_max
 | |
| 				 * every second line.
 | |
| 				 */
 | |
| 				this->a_cur = abs(this->a_cur) % 2 ? 0 : (this->a_max > 0 ? 1 : -1);
 | |
| 
 | |
| 				if (this->b_max > 0) {
 | |
| 					++this->b_cur;
 | |
| 				} else {
 | |
| 					--this->b_cur;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* And convert the coordinates back once we've gone to the next tile. */
 | |
| 		uint x = this->base_x + (this->a_cur - this->b_cur) / 2;
 | |
| 		uint y = this->base_y + (this->b_cur + this->a_cur) / 2;
 | |
| 		/* Prevent wrapping around the map's borders. */
 | |
| 		this->tile = x >= Map::SizeX() || y >= Map::SizeY() ? INVALID_TILE : TileXY(x, y);
 | |
| 	} while (this->tile > Map::Size() && this->b_max != this->b_cur);
 | |
| 
 | |
| 	if (this->b_max == this->b_cur) this->tile = INVALID_TILE;
 | |
| 	return *this;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Create either an OrthogonalTileIterator or DiagonalTileIterator given the diagonal parameter.
 | |
|  * @param corner1 Tile from where to begin iterating.
 | |
|  * @param corner2 Tile where to end the iterating.
 | |
|  * @param diagonal Whether to create a DiagonalTileIterator or OrthogonalTileIterator.
 | |
|  * @return unique_ptr to the allocated TileIterator.
 | |
|  */
 | |
| /* static */ std::unique_ptr<TileIterator> TileIterator::Create(TileIndex corner1, TileIndex corner2, bool diagonal)
 | |
| {
 | |
| 	if (diagonal) {
 | |
| 		return std::make_unique<DiagonalTileIterator>(corner1, corner2);
 | |
| 	}
 | |
| 	return std::make_unique<OrthogonalTileIterator>(corner1, corner2);
 | |
| }
 | 
