205 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			205 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| /* $Id$ */
 | |
| 
 | |
| /**
 | |
|  * Fibonacci heap.
 | |
|  *  This heap is heavily optimized for the Insert and Pop functions.
 | |
|  *  Peek and Pop always return the current lowest value in the list.
 | |
|  *  Insert is implemented as a lazy insert, as it will simply add the new
 | |
|  *  node to the root list. Sort is done on every Pop operation.
 | |
|  */
 | |
| class Fibonacci_Heap {
 | |
| 	_min = null;
 | |
| 	_min_index = 0;
 | |
| 	_min_priority = 0;
 | |
| 	_count = 0;
 | |
| 	_root_list = null;
 | |
| 
 | |
| 	/**
 | |
| 	 * Create a new fibonacci heap.
 | |
| 	 * http://en.wikipedia.org/wiki/Fibonacci_heap
 | |
| 	 */
 | |
| 	constructor() {
 | |
| 		_count = 0;
 | |
| 		_min = Node();
 | |
| 		_min.priority = 0x7FFFFFFF;
 | |
| 		_min_index = 0;
 | |
| 		_min_priority = 0x7FFFFFFF;
 | |
| 		_root_list = [];
 | |
| 	}
 | |
| 
 | |
| 	/**
 | |
| 	 * Insert a new entry in the heap.
 | |
| 	 *  The complexity of this operation is O(1).
 | |
| 	 * @param item The item to add to the list.
 | |
| 	 * @param priority The priority this item has.
 | |
| 	 */
 | |
| 	function Insert(item, priority);
 | |
| 
 | |
| 	/**
 | |
| 	 * Pop the first entry of the list.
 | |
| 	 *  This is always the item with the lowest priority.
 | |
| 	 *  The complexity of this operation is O(ln n).
 | |
| 	 * @return The item of the entry with the lowest priority.
 | |
| 	 */
 | |
| 	function Pop();
 | |
| 
 | |
| 	/**
 | |
| 	 * Peek the first entry of the list.
 | |
| 	 *  This is always the item with the lowest priority.
 | |
| 	 *  The complexity of this operation is O(1).
 | |
| 	 * @return The item of the entry with the lowest priority.
 | |
| 	 */
 | |
| 	function Peek();
 | |
| 
 | |
| 	/**
 | |
| 	 * Get the amount of current items in the list.
 | |
| 	 *  The complexity of this operation is O(1).
 | |
| 	 * @return The amount of items currently in the list.
 | |
| 	 */
 | |
| 	function Count();
 | |
| 
 | |
| 	/**
 | |
| 	 * Check if an item exists in the list.
 | |
| 	 *  The complexity of this operation is O(n).
 | |
| 	 * @param item The item to check for.
 | |
| 	 * @return True if the item is already in the list.
 | |
| 	 */
 | |
| 	function Exists(item);
 | |
| };
 | |
| 
 | |
| function Fibonacci_Heap::Insert(item, priority) {
 | |
| 	/* Create a new node instance to add to the heap. */
 | |
| 	local node = Node();
 | |
| 	/* Changing params is faster than using constructor values */
 | |
| 	node.item = item;
 | |
| 	node.priority = priority;
 | |
| 
 | |
| 	/* Update the reference to the minimum node if this node has a
 | |
| 	 * smaller priority. */
 | |
| 	if (_min_priority > priority) {
 | |
| 		_min = node;
 | |
| 		_min_index = _root_list.len();
 | |
| 		_min_priority = priority;
 | |
| 	}
 | |
| 
 | |
| 	_root_list.append(node);
 | |
| 	_count++;
 | |
| }
 | |
| 
 | |
| function Fibonacci_Heap::Pop() {
 | |
| 
 | |
| 	if (_count == 0) return null;
 | |
| 
 | |
| 	/* Bring variables from the class scope to this scope explicitly to
 | |
| 	 * optimize variable lookups by Squirrel. */
 | |
| 	local z = _min;
 | |
| 	local tmp_root_list = _root_list;
 | |
| 
 | |
| 	/* If there are any children, bring them all to the root level. */
 | |
| 	tmp_root_list.extend(z.child);
 | |
| 
 | |
| 	/* Remove the minimum node from the rootList. */
 | |
| 	tmp_root_list.remove(_min_index);
 | |
| 	local root_cache = {};
 | |
| 
 | |
| 	/* Now we decrease the number of nodes on the root level by
 | |
| 	 * merging nodes which have the same degree. The node with
 | |
| 	 * the lowest priority value will become the parent. */
 | |
| 	foreach(x in tmp_root_list) {
 | |
| 		local y;
 | |
| 
 | |
| 		/* See if we encountered a node with the same degree already. */
 | |
| 		while (y = root_cache.rawdelete(x.degree)) {
 | |
| 			/* Check the priorities. */
 | |
| 			if (x.priority > y.priority) {
 | |
| 				local tmp = x;
 | |
| 				x = y;
 | |
| 				y = tmp;
 | |
| 			}
 | |
| 
 | |
| 			/* Make y a child of x. */
 | |
| 			x.child.append(y);
 | |
| 			x.degree++;
 | |
| 		}
 | |
| 
 | |
| 		root_cache[x.degree] <- x;
 | |
| 	}
 | |
| 
 | |
| 	/* The root_cache contains all the nodes which will form the
 | |
| 	 *  new rootList. We reset the priority to the maximum number
 | |
| 	 *  for a 32 signed integer to find a new minumum. */
 | |
| 	tmp_root_list.resize(root_cache.len());
 | |
| 	local i = 0;
 | |
| 	local tmp_min_priority = 0x7FFFFFFF;
 | |
| 
 | |
| 	/* Now we need to find the new minimum among the root nodes. */
 | |
| 	foreach (val in root_cache) {
 | |
| 		if (val.priority < tmp_min_priority) {
 | |
| 			_min = val;
 | |
| 			_min_index = i;
 | |
| 			tmp_min_priority = val.priority;
 | |
| 		}
 | |
| 
 | |
| 		tmp_root_list[i++] = val;
 | |
| 	}
 | |
| 
 | |
| 	/* Update global variables. */
 | |
| 	_min_priority = tmp_min_priority;
 | |
| 
 | |
| 	_count--;
 | |
| 	return z.item;
 | |
| }
 | |
| 
 | |
| function Fibonacci_Heap::Peek() {
 | |
| 	if (_count == 0) return null;
 | |
| 	return _min.item;
 | |
| }
 | |
| 
 | |
| function Fibonacci_Heap::Count() {
 | |
| 	return _count;
 | |
| }
 | |
| 
 | |
| function Fibonacci_Heap::Exists(item) {
 | |
| 	return ExistsIn(_root_list, item);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Auxilary function to search through the whole heap.
 | |
|  * @param list The list of nodes to look through.
 | |
|  * @param item The item to search for.
 | |
|  * @return True if the item is found, false otherwise.
 | |
|  */
 | |
| function Fibonacci_Heap::ExistsIn(list, item) {
 | |
| 
 | |
| 	foreach (val in list) {
 | |
| 		if (val.item == item) {
 | |
| 			return true;
 | |
| 		}
 | |
| 
 | |
| 		foreach (c in val.child) {
 | |
| 			if (ExistsIn(c, item)) {
 | |
| 				return true;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* No luck, item doesn't exists in the tree rooted under list. */
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Basic class the fibonacci heap is composed of.
 | |
|  */
 | |
| class Fibonacci_Heap.Node {
 | |
| 	degree = null;
 | |
| 	child = null;
 | |
| 
 | |
| 	item = null;
 | |
| 	priority = null;
 | |
| 
 | |
| 	constructor() {
 | |
| 		child = [];
 | |
| 		degree = 0;
 | |
| 	}
 | |
| };
 | 
