395 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			395 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /* $Id$ */
 | |
| 
 | |
| /*
 | |
|  * This file is part of OpenTTD.
 | |
|  * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
 | |
|  * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 | |
|  * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| /** @file articulated_vehicles.cpp Implementation of articulated vehicles. */
 | |
| 
 | |
| #include "stdafx.h"
 | |
| #include "train.h"
 | |
| #include "roadveh.h"
 | |
| #include "vehicle_func.h"
 | |
| #include "engine_func.h"
 | |
| 
 | |
| #include "table/strings.h"
 | |
| #include "table/sprites.h"
 | |
| 
 | |
| static const uint MAX_ARTICULATED_PARTS = 100; ///< Maximum of articulated parts per vehicle, i.e. when to abort calling the articulated vehicle callback.
 | |
| 
 | |
| /**
 | |
|  * Determines the next articulated part to attach
 | |
|  * @param index Position in chain
 | |
|  * @param front_type Front engine type
 | |
|  * @param front Front engine
 | |
|  * @param mirrored Returns whether the part shall be flipped.
 | |
|  * @return engine to add or INVALID_ENGINE
 | |
|  */
 | |
| static EngineID GetNextArticPart(uint index, EngineID front_type, Vehicle *front = NULL, bool *mirrored = NULL)
 | |
| {
 | |
| 	assert(front == NULL || front->engine_type == front_type);
 | |
| 
 | |
| 	uint16 callback = GetVehicleCallback(CBID_VEHICLE_ARTIC_ENGINE, index, 0, front_type, front);
 | |
| 	if (callback == CALLBACK_FAILED || GB(callback, 0, 8) == 0xFF) return INVALID_ENGINE;
 | |
| 
 | |
| 	if (mirrored != NULL) *mirrored = HasBit(callback, 7);
 | |
| 	return GetNewEngineID(GetEngineGRF(front_type), Engine::Get(front_type)->type, GB(callback, 0, 7));
 | |
| }
 | |
| 
 | |
| uint CountArticulatedParts(EngineID engine_type, bool purchase_window)
 | |
| {
 | |
| 	if (!HasBit(EngInfo(engine_type)->callback_mask, CBM_VEHICLE_ARTIC_ENGINE)) return 0;
 | |
| 
 | |
| 	/* If we can't allocate a vehicle now, we can't allocate it in the command
 | |
| 	 * either, so it doesn't matter how many articulated parts there are. */
 | |
| 	if (!Vehicle::CanAllocateItem()) return 0;
 | |
| 
 | |
| 	Vehicle *v = NULL;
 | |
| 	if (!purchase_window) {
 | |
| 		v = new Vehicle();
 | |
| 		v->engine_type = engine_type;
 | |
| 	}
 | |
| 
 | |
| 	uint i;
 | |
| 	for (i = 1; i < MAX_ARTICULATED_PARTS; i++) {
 | |
| 		if (GetNextArticPart(i, engine_type, v) == INVALID_ENGINE) break;
 | |
| 	}
 | |
| 
 | |
| 	delete v;
 | |
| 
 | |
| 	return i - 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Returns the default (non-refitted) capacity of a specific EngineID.
 | |
|  * @param engine the EngineID of iterest
 | |
|  * @param cargo_type returns the default cargo type, if needed
 | |
|  * @return capacity
 | |
|  */
 | |
| static inline uint16 GetVehicleDefaultCapacity(EngineID engine, CargoID *cargo_type)
 | |
| {
 | |
| 	const Engine *e = Engine::Get(engine);
 | |
| 	CargoID cargo = (e->CanCarryCargo() ? e->GetDefaultCargoType() : (CargoID)CT_INVALID);
 | |
| 	if (cargo_type != NULL) *cargo_type = cargo;
 | |
| 	if (cargo == CT_INVALID) return 0;
 | |
| 	return e->GetDisplayDefaultCapacity();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Returns all cargos a vehicle can carry.
 | |
|  * @param engine the EngineID of iterest
 | |
|  * @param include_initial_cargo_type if true the default cargo type of the vehicle is included; if false only the refit_mask
 | |
|  * @return bit set of CargoIDs
 | |
|  */
 | |
| static inline uint32 GetAvailableVehicleCargoTypes(EngineID engine, bool include_initial_cargo_type)
 | |
| {
 | |
| 	uint32 cargos = 0;
 | |
| 	CargoID initial_cargo_type;
 | |
| 
 | |
| 	if (GetVehicleDefaultCapacity(engine, &initial_cargo_type) > 0) {
 | |
| 		const EngineInfo *ei = EngInfo(engine);
 | |
| 		cargos = ei->refit_mask;
 | |
| 		if (include_initial_cargo_type && initial_cargo_type < NUM_CARGO) SetBit(cargos, initial_cargo_type);
 | |
| 	}
 | |
| 
 | |
| 	return cargos;
 | |
| }
 | |
| 
 | |
| CargoArray GetCapacityOfArticulatedParts(EngineID engine)
 | |
| {
 | |
| 	CargoArray capacity;
 | |
| 	const Engine *e = Engine::Get(engine);
 | |
| 
 | |
| 	CargoID cargo_type;
 | |
| 	uint16 cargo_capacity = GetVehicleDefaultCapacity(engine, &cargo_type);
 | |
| 	if (cargo_type < NUM_CARGO) capacity[cargo_type] = cargo_capacity;
 | |
| 
 | |
| 	if (e->type != VEH_TRAIN && e->type != VEH_ROAD) return capacity;
 | |
| 
 | |
| 	if (!HasBit(e->info.callback_mask, CBM_VEHICLE_ARTIC_ENGINE)) return capacity;
 | |
| 
 | |
| 	for (uint i = 1; i < MAX_ARTICULATED_PARTS; i++) {
 | |
| 		EngineID artic_engine = GetNextArticPart(i, engine);
 | |
| 		if (artic_engine == INVALID_ENGINE) break;
 | |
| 
 | |
| 		cargo_capacity = GetVehicleDefaultCapacity(artic_engine, &cargo_type);
 | |
| 		if (cargo_type < NUM_CARGO) capacity[cargo_type] += cargo_capacity;
 | |
| 	}
 | |
| 
 | |
| 	return capacity;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Checks whether any of the articulated parts is refittable
 | |
|  * @param engine the first part
 | |
|  * @return true if refittable
 | |
|  */
 | |
| bool IsArticulatedVehicleRefittable(EngineID engine)
 | |
| {
 | |
| 	if (IsEngineRefittable(engine)) return true;
 | |
| 
 | |
| 	const Engine *e = Engine::Get(engine);
 | |
| 	if (e->type != VEH_TRAIN && e->type != VEH_ROAD) return false;
 | |
| 
 | |
| 	if (!HasBit(e->info.callback_mask, CBM_VEHICLE_ARTIC_ENGINE)) return false;
 | |
| 
 | |
| 	for (uint i = 1; i < MAX_ARTICULATED_PARTS; i++) {
 | |
| 		EngineID artic_engine = GetNextArticPart(i, engine);
 | |
| 		if (artic_engine == INVALID_ENGINE) break;
 | |
| 
 | |
| 		if (IsEngineRefittable(artic_engine)) return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Merges the refit_masks of all articulated parts.
 | |
|  * @param engine the first part
 | |
|  * @param include_initial_cargo_type if true the default cargo type of the vehicle is included; if false only the refit_mask
 | |
|  * @param union_mask returns bit mask of CargoIDs which are a refit option for at least one articulated part
 | |
|  * @param intersection_mask returns bit mask of CargoIDs which are a refit option for every articulated part (with default capacity > 0)
 | |
|  */
 | |
| void GetArticulatedRefitMasks(EngineID engine, bool include_initial_cargo_type, uint32 *union_mask, uint32 *intersection_mask)
 | |
| {
 | |
| 	const Engine *e = Engine::Get(engine);
 | |
| 	uint32 veh_cargos = GetAvailableVehicleCargoTypes(engine, include_initial_cargo_type);
 | |
| 	*union_mask = veh_cargos;
 | |
| 	*intersection_mask = (veh_cargos != 0) ? veh_cargos : UINT32_MAX;
 | |
| 
 | |
| 	if (e->type != VEH_TRAIN && e->type != VEH_ROAD) return;
 | |
| 	if (!HasBit(e->info.callback_mask, CBM_VEHICLE_ARTIC_ENGINE)) return;
 | |
| 
 | |
| 	for (uint i = 1; i < MAX_ARTICULATED_PARTS; i++) {
 | |
| 		EngineID artic_engine = GetNextArticPart(i, engine);
 | |
| 		if (artic_engine == INVALID_ENGINE) break;
 | |
| 
 | |
| 		veh_cargos = GetAvailableVehicleCargoTypes(artic_engine, include_initial_cargo_type);
 | |
| 		*union_mask |= veh_cargos;
 | |
| 		if (veh_cargos != 0) *intersection_mask &= veh_cargos;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Ors the refit_masks of all articulated parts.
 | |
|  * @param engine the first part
 | |
|  * @param include_initial_cargo_type if true the default cargo type of the vehicle is included; if false only the refit_mask
 | |
|  * @return bit mask of CargoIDs which are a refit option for at least one articulated part
 | |
|  */
 | |
| uint32 GetUnionOfArticulatedRefitMasks(EngineID engine, bool include_initial_cargo_type)
 | |
| {
 | |
| 	uint32 union_mask, intersection_mask;
 | |
| 	GetArticulatedRefitMasks(engine, include_initial_cargo_type, &union_mask, &intersection_mask);
 | |
| 	return union_mask;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Ands the refit_masks of all articulated parts.
 | |
|  * @param engine the first part
 | |
|  * @param include_initial_cargo_type if true the default cargo type of the vehicle is included; if false only the refit_mask
 | |
|  * @return bit mask of CargoIDs which are a refit option for every articulated part (with default capacity > 0)
 | |
|  */
 | |
| uint32 GetIntersectionOfArticulatedRefitMasks(EngineID engine, bool include_initial_cargo_type)
 | |
| {
 | |
| 	uint32 union_mask, intersection_mask;
 | |
| 	GetArticulatedRefitMasks(engine, include_initial_cargo_type, &union_mask, &intersection_mask);
 | |
| 	return intersection_mask;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Tests if all parts of an articulated vehicle are refitted to the same cargo.
 | |
|  * Note: Vehicles not carrying anything are ignored
 | |
|  * @param v the first vehicle in the chain
 | |
|  * @param cargo_type returns the common CargoID if needed. (CT_INVALID if no part is carrying something or they are carrying different things)
 | |
|  * @return true if some parts are carrying different cargos, false if all parts are carrying the same (nothing is also the same)
 | |
|  */
 | |
| bool IsArticulatedVehicleCarryingDifferentCargos(const Vehicle *v, CargoID *cargo_type)
 | |
| {
 | |
| 	CargoID first_cargo = CT_INVALID;
 | |
| 
 | |
| 	do {
 | |
| 		if (v->cargo_cap > 0 && v->cargo_type != CT_INVALID) {
 | |
| 			if (first_cargo == CT_INVALID) first_cargo = v->cargo_type;
 | |
| 			if (first_cargo != v->cargo_type) {
 | |
| 				if (cargo_type != NULL) *cargo_type = CT_INVALID;
 | |
| 				return true;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		switch (v->type) {
 | |
| 			case VEH_TRAIN:
 | |
| 				v = Train::From(v)->HasArticulatedPart() ? Train::From(v)->GetNextArticPart() : NULL;
 | |
| 				break;
 | |
| 
 | |
| 			case VEH_ROAD:
 | |
| 				v = RoadVehicle::From(v)->HasArticulatedPart() ? v->Next() : NULL;
 | |
| 				break;
 | |
| 
 | |
| 			default:
 | |
| 				v = NULL;
 | |
| 				break;
 | |
| 		}
 | |
| 	} while (v != NULL);
 | |
| 
 | |
| 	if (cargo_type != NULL) *cargo_type = first_cargo;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Checks whether the specs of freshly build articulated vehicles are consistent with the information specified in the purchase list.
 | |
|  * Only essential information is checked to leave room for magic tricks/workarounds to grfcoders.
 | |
|  * It checks:
 | |
|  *   For autoreplace/-renew:
 | |
|  *    - Default cargo type (without capacity)
 | |
|  *    - intersection and union of refit masks.
 | |
|  */
 | |
| void CheckConsistencyOfArticulatedVehicle(const Vehicle *v)
 | |
| {
 | |
| 	const Engine *engine = Engine::Get(v->engine_type);
 | |
| 
 | |
| 	uint32 purchase_refit_union, purchase_refit_intersection;
 | |
| 	GetArticulatedRefitMasks(v->engine_type, true, &purchase_refit_union, &purchase_refit_intersection);
 | |
| 	CargoArray purchase_default_capacity = GetCapacityOfArticulatedParts(v->engine_type);
 | |
| 
 | |
| 	uint32 real_refit_union = 0;
 | |
| 	uint32 real_refit_intersection = UINT_MAX;
 | |
| 	CargoArray real_default_capacity;
 | |
| 
 | |
| 	do {
 | |
| 		uint32 refit_mask = GetAvailableVehicleCargoTypes(v->engine_type, true);
 | |
| 		real_refit_union |= refit_mask;
 | |
| 		if (refit_mask != 0) real_refit_intersection &= refit_mask;
 | |
| 
 | |
| 		assert(v->cargo_type < NUM_CARGO);
 | |
| 		real_default_capacity[v->cargo_type] += v->cargo_cap;
 | |
| 
 | |
| 		switch (v->type) {
 | |
| 			case VEH_TRAIN:
 | |
| 				v = Train::From(v)->HasArticulatedPart() ? Train::From(v)->GetNextArticPart() : NULL;
 | |
| 				break;
 | |
| 
 | |
| 			case VEH_ROAD:
 | |
| 				v = RoadVehicle::From(v)->HasArticulatedPart() ? v->Next() : NULL;
 | |
| 				break;
 | |
| 
 | |
| 			default:
 | |
| 				v = NULL;
 | |
| 				break;
 | |
| 		}
 | |
| 	} while (v != NULL);
 | |
| 
 | |
| 	/* Check whether the vehicle carries more cargos than expected */
 | |
| 	bool carries_more = false;
 | |
| 	for (CargoID cid = 0; cid < NUM_CARGO; cid++) {
 | |
| 		if (real_default_capacity[cid] != 0 && purchase_default_capacity[cid] == 0) {
 | |
| 			carries_more = true;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* show a warning once for each GRF after each game load */
 | |
| 	if (real_refit_union != purchase_refit_union || real_refit_intersection != purchase_refit_intersection || carries_more) {
 | |
| 		ShowNewGrfVehicleError(engine->index, STR_NEWGRF_BUGGY, STR_NEWGRF_BUGGY_ARTICULATED_CARGO, GBUG_VEH_REFIT, false);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void AddArticulatedParts(Vehicle *first)
 | |
| {
 | |
| 	VehicleType type = first->type;
 | |
| 	if (!HasBit(EngInfo(first->engine_type)->callback_mask, CBM_VEHICLE_ARTIC_ENGINE)) return;
 | |
| 
 | |
| 	Vehicle *v = first;
 | |
| 	for (uint i = 1; i < MAX_ARTICULATED_PARTS; i++) {
 | |
| 		bool flip_image;
 | |
| 		EngineID engine_type = GetNextArticPart(i, first->engine_type, first, &flip_image);
 | |
| 		if (engine_type == INVALID_ENGINE) return;
 | |
| 
 | |
| 		/* In the (very rare) case the GRF reported wrong number of articulated parts
 | |
| 		 * and we run out of available vehicles, bail out. */
 | |
| 		if (!Vehicle::CanAllocateItem()) return;
 | |
| 
 | |
| 		const Engine *e_artic = Engine::Get(engine_type);
 | |
| 		switch (type) {
 | |
| 			default: NOT_REACHED();
 | |
| 
 | |
| 			case VEH_TRAIN: {
 | |
| 				Train *front = Train::From(first);
 | |
| 				Train *t = new Train();
 | |
| 				v->SetNext(t);
 | |
| 				v = t;
 | |
| 
 | |
| 				t->subtype = 0;
 | |
| 				t->track = front->track;
 | |
| 				t->railtype = front->railtype;
 | |
| 				t->tcache.first_engine = front->engine_type; // needs to be set before first callback
 | |
| 
 | |
| 				t->spritenum = e_artic->u.rail.image_index;
 | |
| 				if (e_artic->CanCarryCargo()) {
 | |
| 					t->cargo_type = e_artic->GetDefaultCargoType();
 | |
| 					t->cargo_cap = e_artic->u.rail.capacity;  // Callback 36 is called when the consist is finished
 | |
| 				} else {
 | |
| 					t->cargo_type = front->cargo_type; // Needed for livery selection
 | |
| 					t->cargo_cap = 0;
 | |
| 				}
 | |
| 
 | |
| 				t->SetArticulatedPart();
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			case VEH_ROAD: {
 | |
| 				RoadVehicle *front = RoadVehicle::From(first);
 | |
| 				RoadVehicle *rv = new RoadVehicle();
 | |
| 				v->SetNext(rv);
 | |
| 				v = rv;
 | |
| 
 | |
| 				rv->subtype = 0;
 | |
| 				rv->rcache.first_engine = front->engine_type; // needs to be set before first callback
 | |
| 				rv->rcache.cached_veh_length = 8; // Callback is called when the consist is finished
 | |
| 				rv->state = RVSB_IN_DEPOT;
 | |
| 
 | |
| 				rv->roadtype = front->roadtype;
 | |
| 				rv->compatible_roadtypes = front->compatible_roadtypes;
 | |
| 
 | |
| 				rv->spritenum = e_artic->u.road.image_index;
 | |
| 				if (e_artic->CanCarryCargo()) {
 | |
| 					rv->cargo_type = e_artic->GetDefaultCargoType();
 | |
| 					rv->cargo_cap = e_artic->u.road.capacity;  // Callback 36 is called when the consist is finished
 | |
| 				} else {
 | |
| 					rv->cargo_type = front->cargo_type; // Needed for livery selection
 | |
| 					rv->cargo_cap = 0;
 | |
| 				}
 | |
| 
 | |
| 				rv->SetArticulatedPart();
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* get common values from first engine */
 | |
| 		v->direction = first->direction;
 | |
| 		v->owner = first->owner;
 | |
| 		v->tile = first->tile;
 | |
| 		v->x_pos = first->x_pos;
 | |
| 		v->y_pos = first->y_pos;
 | |
| 		v->z_pos = first->z_pos;
 | |
| 		v->build_year = first->build_year;
 | |
| 		v->vehstatus = first->vehstatus & ~VS_STOPPED;
 | |
| 
 | |
| 		v->cargo_subtype = 0;
 | |
| 		v->max_speed = 0;
 | |
| 		v->max_age = 0;
 | |
| 		v->engine_type = engine_type;
 | |
| 		v->value = 0;
 | |
| 		v->cur_image = SPR_IMG_QUERY;
 | |
| 		v->random_bits = VehicleRandomBits();
 | |
| 
 | |
| 		if (flip_image) v->spritenum++;
 | |
| 
 | |
| 		VehicleMove(v, false);
 | |
| 	}
 | |
| }
 | 
