247 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			247 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* $Id$ */
 | 
						|
 | 
						|
#include "stdafx.h"
 | 
						|
#include "openttd.h"
 | 
						|
#include "debug.h"
 | 
						|
#include "functions.h"
 | 
						|
#include "macros.h"
 | 
						|
#include "map.h"
 | 
						|
#include "direction.h"
 | 
						|
 | 
						|
#if defined(_MSC_VER) && _MSC_VER >= 1400 /* VStudio 2005 is stupid! */
 | 
						|
/* Why the hell is that not in all MSVC headers?? */
 | 
						|
_CRTIMP void __cdecl _assert(void *, void *, unsigned);
 | 
						|
#endif
 | 
						|
 | 
						|
uint _map_log_x;
 | 
						|
uint _map_size_x;
 | 
						|
uint _map_size_y;
 | 
						|
uint _map_tile_mask;
 | 
						|
uint _map_size;
 | 
						|
 | 
						|
Tile* _m = NULL;
 | 
						|
 | 
						|
 | 
						|
void AllocateMap(uint size_x, uint size_y)
 | 
						|
{
 | 
						|
	// Make sure that the map size is within the limits and that
 | 
						|
	// the x axis size is a power of 2.
 | 
						|
	if (size_x < 64 || size_x > 2048 ||
 | 
						|
			size_y < 64 || size_y > 2048 ||
 | 
						|
			(size_x&(size_x-1)) != 0 ||
 | 
						|
			(size_y&(size_y-1)) != 0)
 | 
						|
		error("Invalid map size");
 | 
						|
 | 
						|
	DEBUG(map, 1)("Allocating map of size %dx%d", size_x, size_y);
 | 
						|
 | 
						|
	_map_log_x = FindFirstBit(size_x);
 | 
						|
	_map_size_x = size_x;
 | 
						|
	_map_size_y = size_y;
 | 
						|
	_map_size = size_x * size_y;
 | 
						|
	_map_tile_mask = _map_size - 1;
 | 
						|
 | 
						|
	free(_m);
 | 
						|
	_m = calloc(_map_size, sizeof(*_m));
 | 
						|
 | 
						|
	// XXX TODO handle memory shortage more gracefully
 | 
						|
	if (_m == NULL) error("Failed to allocate memory for the map");
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#ifdef _DEBUG
 | 
						|
TileIndex TileAdd(TileIndex tile, TileIndexDiff add,
 | 
						|
	const char *exp, const char *file, int line)
 | 
						|
{
 | 
						|
	int dx;
 | 
						|
	int dy;
 | 
						|
	uint x;
 | 
						|
	uint y;
 | 
						|
 | 
						|
	dx = add & MapMaxX();
 | 
						|
	if (dx >= (int)MapSizeX() / 2) dx -= MapSizeX();
 | 
						|
	dy = (add - dx) / (int)MapSizeX();
 | 
						|
 | 
						|
	x = TileX(tile) + dx;
 | 
						|
	y = TileY(tile) + dy;
 | 
						|
 | 
						|
	if (x >= MapSizeX() || y >= MapSizeY()) {
 | 
						|
		char buf[512];
 | 
						|
 | 
						|
		snprintf(buf, lengthof(buf), "TILE_ADD(%s) when adding 0x%.4X and 0x%.4X failed",
 | 
						|
			exp, tile, add);
 | 
						|
#if !defined(_MSC_VER)
 | 
						|
		fprintf(stderr, "%s:%d %s\n", file, line, buf);
 | 
						|
#else
 | 
						|
		_assert(buf, (char*)file, line);
 | 
						|
#endif
 | 
						|
	}
 | 
						|
 | 
						|
	assert(TileXY(x,y) == TILE_MASK(tile + add));
 | 
						|
 | 
						|
	return TileXY(x,y);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
uint ScaleByMapSize(uint n)
 | 
						|
{
 | 
						|
	// First shift by 12 to prevent integer overflow for large values of n.
 | 
						|
	// >>12 is safe since the min mapsize is 64x64
 | 
						|
	// Add (1<<4)-1 to round upwards.
 | 
						|
	return (n * (MapSize() >> 12) + (1<<4) - 1) >> 4;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Scale relative to the circumference of the map
 | 
						|
uint ScaleByMapSize1D(uint n)
 | 
						|
{
 | 
						|
	// Normal circumference for the X+Y is 256+256 = 1<<9
 | 
						|
	// Note, not actually taking the full circumference into account,
 | 
						|
	// just half of it.
 | 
						|
	// (1<<9) - 1 is there to scale upwards.
 | 
						|
	return (n * (MapSizeX() + MapSizeY()) + (1<<9) - 1) >> 9;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// This function checks if we add addx/addy to tile, if we
 | 
						|
//  do wrap around the edges. For example, tile = (10,2) and
 | 
						|
//  addx = +3 and addy = -4. This function will now return
 | 
						|
//  INVALID_TILE, because the y is wrapped. This is needed in
 | 
						|
//  for example, farmland. When the tile is not wrapped,
 | 
						|
//  the result will be tile + TileDiffXY(addx, addy)
 | 
						|
uint TileAddWrap(TileIndex tile, int addx, int addy)
 | 
						|
{
 | 
						|
	uint x = TileX(tile) + addx;
 | 
						|
	uint y = TileY(tile) + addy;
 | 
						|
 | 
						|
	// Are we about to wrap?
 | 
						|
	if (x < MapMaxX() && y < MapMaxY())
 | 
						|
		return tile + TileDiffXY(addx, addy);
 | 
						|
 | 
						|
	return INVALID_TILE;
 | 
						|
}
 | 
						|
 | 
						|
const TileIndexDiffC _tileoffs_by_diagdir[] = {
 | 
						|
	{-1,  0}, // DIAGDIR_NE
 | 
						|
	{ 0,  1}, // DIAGDIR_SE
 | 
						|
	{ 1,  0}, // DIAGDIR_SW
 | 
						|
	{ 0, -1}  // DIAGDIR_NW
 | 
						|
};
 | 
						|
 | 
						|
const TileIndexDiffC _tileoffs_by_dir[] = {
 | 
						|
	{-1, -1}, // DIR_N
 | 
						|
	{-1,  0}, // DIR_NE
 | 
						|
	{-1,  1}, // DIR_E
 | 
						|
	{ 0,  1}, // DIR_SE
 | 
						|
	{ 1,  1}, // DIR_S
 | 
						|
	{ 1,  0}, // DIR_SW
 | 
						|
	{ 1, -1}, // DIR_W
 | 
						|
	{ 0, -1}  // DIR_NW
 | 
						|
};
 | 
						|
 | 
						|
uint DistanceManhattan(TileIndex t0, TileIndex t1)
 | 
						|
{
 | 
						|
	const uint dx = abs(TileX(t0) - TileX(t1));
 | 
						|
	const uint dy = abs(TileY(t0) - TileY(t1));
 | 
						|
	return dx + dy;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
uint DistanceSquare(TileIndex t0, TileIndex t1)
 | 
						|
{
 | 
						|
	const int dx = TileX(t0) - TileX(t1);
 | 
						|
	const int dy = TileY(t0) - TileY(t1);
 | 
						|
	return dx * dx + dy * dy;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
uint DistanceMax(TileIndex t0, TileIndex t1)
 | 
						|
{
 | 
						|
	const uint dx = abs(TileX(t0) - TileX(t1));
 | 
						|
	const uint dy = abs(TileY(t0) - TileY(t1));
 | 
						|
	return dx > dy ? dx : dy;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
uint DistanceMaxPlusManhattan(TileIndex t0, TileIndex t1)
 | 
						|
{
 | 
						|
	const uint dx = abs(TileX(t0) - TileX(t1));
 | 
						|
	const uint dy = abs(TileY(t0) - TileY(t1));
 | 
						|
	return dx > dy ? 2 * dx + dy : 2 * dy + dx;
 | 
						|
}
 | 
						|
 | 
						|
uint DistanceFromEdge(TileIndex tile)
 | 
						|
{
 | 
						|
	const uint xl = TileX(tile);
 | 
						|
	const uint yl = TileY(tile);
 | 
						|
	const uint xh = MapSizeX() - 1 - xl;
 | 
						|
	const uint yh = MapSizeY() - 1 - yl;
 | 
						|
	const uint minl = xl < yl ? xl : yl;
 | 
						|
	const uint minh = xh < yh ? xh : yh;
 | 
						|
	return minl < minh ? minl : minh;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Function performing a search around a center tile and going outward, thus in circle.
 | 
						|
 * Although it really is a square search...
 | 
						|
 * Every tile will be tested by means of the callback function proc,
 | 
						|
 * which will determine if yes or no the given tile meets criteria of search.
 | 
						|
 * @param tile to start the search from
 | 
						|
 * @param size: number of tiles per side of the desired search area
 | 
						|
 * @param proc: callback testing function pointer.
 | 
						|
 * @param data to be passed to the callback function. Depends on the implementation
 | 
						|
 * @result of the search
 | 
						|
 * @pre proc != NULL
 | 
						|
 * @pre size > 0
 | 
						|
 */
 | 
						|
bool CircularTileSearch(TileIndex tile, uint size, TestTileOnSearchProc proc, uint32 data)
 | 
						|
{
 | 
						|
	uint n, x, y;
 | 
						|
	DiagDirection dir;
 | 
						|
 | 
						|
	assert(proc != NULL);
 | 
						|
	assert(size > 0);
 | 
						|
 | 
						|
	x = TileX(tile);
 | 
						|
	y = TileY(tile);
 | 
						|
 | 
						|
	if (size % 2 == 1) {
 | 
						|
		/* If the length of the side is uneven, the center has to be checked
 | 
						|
		 * separately, as the pattern of uneven sides requires to go around the center */
 | 
						|
		n = 2;
 | 
						|
		if (proc(TileXY(x, y), data)) return true;
 | 
						|
 | 
						|
		/* If tile test is not successfull, get one tile down and left,
 | 
						|
		 * ready for a test in first circle around center tile */
 | 
						|
		x += _tileoffs_by_dir[DIR_W].x;
 | 
						|
		y += _tileoffs_by_dir[DIR_W].y;
 | 
						|
	} else {
 | 
						|
		n = 1;
 | 
						|
		/* To use _tileoffs_by_diagdir's order, we must relocate to
 | 
						|
		 * another tile, as we now first go 'up', 'right', 'down', 'left'
 | 
						|
		 * instead of 'right', 'down', 'left', 'up', which the calling
 | 
						|
		 * function assume. */
 | 
						|
		x++;
 | 
						|
	}
 | 
						|
 | 
						|
	for (; n < size; n += 2) {
 | 
						|
		for (dir = DIAGDIR_NE; dir < DIAGDIR_END; dir++) {
 | 
						|
			uint j;
 | 
						|
			for (j = n; j != 0; j--) {
 | 
						|
				if (x <= MapMaxX() && y <= MapMaxY() && ///< Is the tile within the map?
 | 
						|
						proc(TileXY(x, y), data)) {     ///< Is the callback successfulll?
 | 
						|
					return true;                        ///< then stop the search
 | 
						|
				}
 | 
						|
 | 
						|
				/* Step to the next 'neighbour' in the circular line */
 | 
						|
				x += _tileoffs_by_diagdir[dir].x;
 | 
						|
				y += _tileoffs_by_diagdir[dir].y;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		/* Jump to next circle to test */
 | 
						|
		x += _tileoffs_by_dir[DIR_W].x;
 | 
						|
		y += _tileoffs_by_dir[DIR_W].y;
 | 
						|
	}
 | 
						|
	return false;
 | 
						|
}
 |