Compare commits

...

5 Commits

2 changed files with 535 additions and 92 deletions

View File

@@ -32,24 +32,29 @@ class VideoEditor:
MAX_ZOOM = 10.0
ZOOM_INCREMENT = 0.25
def __init__(self, video_path: str):
self.video_path = Path(video_path)
self.cap = cv2.VideoCapture(str(self.video_path))
# Supported video extensions
VIDEO_EXTENSIONS = {'.mp4', '.avi', '.mov', '.mkv', '.wmv', '.flv', '.webm', '.m4v'}
def __init__(self, path: str):
self.path = Path(path)
if not self.cap.isOpened():
raise ValueError(f"Could not open video file: {video_path}")
# Video file management
self.video_files = []
self.current_video_index = 0
# Video properties
self.total_frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
self.fps = self.cap.get(cv2.CAP_PROP_FPS)
self.frame_width = int(self.cap.get(cv2.CAP_PROP_FRAME_WIDTH))
self.frame_height = int(self.cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# Determine if path is file or directory
if self.path.is_file():
self.video_files = [self.path]
elif self.path.is_dir():
# Load all video files from directory
self.video_files = self._get_video_files_from_directory(self.path)
if not self.video_files:
raise ValueError(f"No video files found in directory: {path}")
else:
raise ValueError(f"Path does not exist: {path}")
# Playback state
self.current_frame = 0
self.is_playing = False
self.playback_speed = 1.0
self.current_display_frame = None
# Initialize with first video
self._load_video(self.video_files[0])
# Mouse and keyboard interaction
self.mouse_dragging = False
@@ -81,6 +86,65 @@ class VideoEditor:
# Display offset for panning when zoomed
self.display_offset = [0, 0]
def _get_video_files_from_directory(self, directory: Path) -> List[Path]:
"""Get all video files from a directory, sorted by name"""
video_files = []
for file_path in directory.iterdir():
if file_path.is_file() and file_path.suffix.lower() in self.VIDEO_EXTENSIONS:
video_files.append(file_path)
return sorted(video_files)
def _load_video(self, video_path: Path):
"""Load a video file and initialize video properties"""
if hasattr(self, 'cap') and self.cap:
self.cap.release()
self.video_path = video_path
self.cap = cv2.VideoCapture(str(self.video_path))
if not self.cap.isOpened():
raise ValueError(f"Could not open video file: {video_path}")
# Video properties
self.total_frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
self.fps = self.cap.get(cv2.CAP_PROP_FPS)
self.frame_width = int(self.cap.get(cv2.CAP_PROP_FRAME_WIDTH))
self.frame_height = int(self.cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# Reset playback state for new video
self.current_frame = 0
self.is_playing = False
self.playback_speed = 1.0
self.current_display_frame = None
# Reset crop, zoom, and cut settings for new video
self.crop_rect = None
self.crop_history = []
self.zoom_factor = 1.0
self.zoom_center = None
self.cut_start_frame = None
self.cut_end_frame = None
self.display_offset = [0, 0]
print(f"Loaded video: {self.video_path.name} ({self.current_video_index + 1}/{len(self.video_files)})")
def switch_to_video(self, index: int):
"""Switch to a specific video by index"""
if 0 <= index < len(self.video_files):
self.current_video_index = index
self._load_video(self.video_files[index])
self.load_current_frame()
def next_video(self):
"""Switch to the next video"""
next_index = (self.current_video_index + 1) % len(self.video_files)
self.switch_to_video(next_index)
def previous_video(self):
"""Switch to the previous video"""
prev_index = (self.current_video_index - 1) % len(self.video_files)
self.switch_to_video(prev_index)
def load_current_frame(self) -> bool:
"""Load the current frame into display cache"""
self.cap.set(cv2.CAP_PROP_POS_FRAMES, self.current_frame)
@@ -273,17 +337,27 @@ class VideoEditor:
cv2.putText(canvas, info_text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2)
cv2.putText(canvas, info_text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 1)
# Add video navigation info
if len(self.video_files) > 1:
video_text = f"Video: {self.current_video_index + 1}/{len(self.video_files)} - {self.video_path.name}"
cv2.putText(canvas, video_text, (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
cv2.putText(canvas, video_text, (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 0), 1)
y_offset = 90
else:
y_offset = 60
# Add crop info
if self.crop_rect:
crop_text = f"Crop: {int(self.crop_rect[0])},{int(self.crop_rect[1])} {int(self.crop_rect[2])}x{int(self.crop_rect[3])}"
cv2.putText(canvas, crop_text, (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
cv2.putText(canvas, crop_text, (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 0), 1)
cv2.putText(canvas, crop_text, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
cv2.putText(canvas, crop_text, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 0), 1)
y_offset += 30
# Add cut info
if self.cut_start_frame is not None or self.cut_end_frame is not None:
cut_text = f"Cut: {self.cut_start_frame or '?'} - {self.cut_end_frame or '?'}"
cv2.putText(canvas, cut_text, (10, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
cv2.putText(canvas, cut_text, (10, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 0), 1)
cv2.putText(canvas, cut_text, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
cv2.putText(canvas, cut_text, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 0), 1)
# Draw timeline
self.draw_timeline(canvas)
@@ -531,6 +605,9 @@ class VideoEditor:
print(" Ctrl+Scroll: Zoom in/out")
print(" 1: Set cut start point")
print(" 2: Set cut end point")
if len(self.video_files) > 1:
print(" N: Next video")
print(" n: Previous video")
print(" Enter: Render video")
print(" Q/ESC: Quit")
print()
@@ -571,6 +648,12 @@ class VideoEditor:
elif key == ord('2'):
self.cut_end_frame = self.current_frame
print(f"Set cut end at frame {self.current_frame}")
elif key == ord('n'):
if len(self.video_files) > 1:
self.previous_video()
elif key == ord('N'):
if len(self.video_files) > 1:
self.next_video()
elif key == 13: # Enter
output_name = f"{self.video_path.stem}_edited.mp4"
self.render_video(str(self.video_path.parent / output_name))
@@ -585,12 +668,12 @@ class VideoEditor:
def main():
parser = argparse.ArgumentParser(description="Fast Video Editor - Crop, Zoom, and Cut videos")
parser.add_argument("video", help="Path to video file")
parser.add_argument("video", help="Path to video file or directory containing videos")
args = parser.parse_args()
if not os.path.isfile(args.video):
print(f"Error: {args.video} is not a valid file")
if not os.path.exists(args.video):
print(f"Error: {args.video} does not exist")
sys.exit(1)
try:

500
main.py
View File

@@ -6,6 +6,8 @@ import numpy as np
import argparse
import shutil
import time
import threading
from concurrent.futures import ThreadPoolExecutor
from pathlib import Path
from typing import List
@@ -22,6 +24,10 @@ class MediaGrader:
FAST_SEEK_MULTIPLIER = 60
IMAGE_DISPLAY_DELAY_MS = 100
# Monitor dimensions for full-screen sizing
MONITOR_WIDTH = 2560
MONITOR_HEIGHT = 1440
# Timeline configuration
TIMELINE_HEIGHT = 60
TIMELINE_MARGIN = 20
@@ -35,6 +41,10 @@ class MediaGrader:
# Seek modifiers for A/D keys
SHIFT_SEEK_MULTIPLIER = 5 # SHIFT + A/D multiplier
CTRL_SEEK_MULTIPLIER = 10 # CTRL + A/D multiplier
# Multi-segment mode configuration
SEGMENT_COUNT = 16 # Number of video segments (2x2 grid)
SEGMENT_OVERLAP_PERCENT = 10 # Percentage overlap between segments
def __init__(
self, directory: str, seek_frames: int = 30, snap_to_iframe: bool = False
@@ -59,6 +69,11 @@ class MediaGrader:
# Timeline visibility state
self.timeline_visible = True
# Improved frame cache for performance
self.frame_cache = {} # Dict[frame_number: frame_data]
self.cache_size_limit = 200 # Increased cache size
self.cache_lock = threading.Lock() # Thread safety for cache
# Key repeat tracking with rate limiting
self.last_seek_time = 0
@@ -105,29 +120,43 @@ class MediaGrader:
# Jump history for H key (undo jump)
self.jump_history = {} # Dict[file_path: List[frame_positions]] for jump undo
# Undo functionality
self.undo_history = [] # List of (source_path, destination_path, original_index) tuples
# Watch tracking for "good look" feature
self.watched_regions = {} # Dict[file_path: List[Tuple[start_frame, end_frame]]]
self.current_watch_start = None # Frame where current viewing session started
self.last_frame_position = 0 # Track last known frame position
# Bisection navigation tracking
self.last_jump_position = {} # Dict[file_path: last_frame] for bisection reference
# Jump history for H key (undo jump)
self.jump_history = {} # Dict[file_path: List[frame_positions]] for jump undo
# Performance optimization: Thread pool for parallel operations
self.thread_pool = ThreadPoolExecutor(max_workers=4)
# Multi-segment mode configuration
MULTI_SEGMENT_MODE = False
SEGMENT_COUNT = 16 # Number of video segments (2x2 grid)
SEGMENT_OVERLAP_PERCENT = 10 # Percentage overlap between segments
def display_with_aspect_ratio(self, frame):
"""Display frame while maintaining aspect ratio and maximizing screen usage"""
if frame is None:
return
# Get frame dimensions
frame_height, frame_width = frame.shape[:2]
# Calculate aspect ratio
frame_aspect_ratio = frame_width / frame_height
monitor_aspect_ratio = self.MONITOR_WIDTH / self.MONITOR_HEIGHT
# Determine if frame is vertical or horizontal relative to monitor
if frame_aspect_ratio < monitor_aspect_ratio:
# Frame is more vertical than monitor - maximize height
display_height = self.MONITOR_HEIGHT
display_width = int(display_height * frame_aspect_ratio)
else:
# Frame is more horizontal than monitor - maximize width
display_width = self.MONITOR_WIDTH
display_height = int(display_width / frame_aspect_ratio)
# Resize window to calculated dimensions
cv2.resizeWindow("Media Grader", display_width, display_height)
# Center the window on screen
x_position = (self.MONITOR_WIDTH - display_width) // 2
y_position = (self.MONITOR_HEIGHT - display_height) // 2
cv2.moveWindow("Media Grader", x_position, y_position)
# Display the frame
cv2.imshow("Media Grader", frame)
# Seek modifiers for A/D keys
SHIFT_SEEK_MULTIPLIER = 5 # SHIFT + A/D multiplier
def find_media_files(self) -> List[Path]:
"""Find all media files recursively in the directory"""
media_files = []
@@ -515,40 +544,213 @@ class MediaGrader:
print(f"Timeline {'visible' if self.timeline_visible else 'hidden'}")
return True
def setup_segment_captures(self):
"""Setup multiple video captures for segment mode"""
def load_segment_frame_fast(self, segment_index, start_frame, shared_cap):
"""Load a single segment frame using a shared capture (much faster)"""
segment_start_time = time.time()
try:
# Time the seek operation
seek_start = time.time()
shared_cap.set(cv2.CAP_PROP_POS_FRAMES, start_frame)
seek_time = (time.time() - seek_start) * 1000
# Time the frame read
read_start = time.time()
ret, frame = shared_cap.read()
read_time = (time.time() - read_start) * 1000
total_time = (time.time() - segment_start_time) * 1000
print(f"Segment {segment_index}: Total={total_time:.1f}ms (Seek={seek_time:.1f}ms, Read={read_time:.1f}ms)")
if ret:
return segment_index, frame.copy(), start_frame # Copy frame since we'll reuse the capture
else:
return segment_index, None, start_frame
except Exception as e:
error_time = (time.time() - segment_start_time) * 1000
print(f"Segment {segment_index}: ERROR in {error_time:.1f}ms: {e}")
return segment_index, None, start_frame
def setup_segment_captures_blazing_fast(self):
"""BLAZING FAST: Sample frames at intervals without any seeking (10-50ms total)"""
if not self.is_video(self.media_files[self.current_index]):
return
start_time = time.time()
print(f"Setting up {self.segment_count} segments with BLAZING FAST method...")
# Clean up existing segment captures
self.cleanup_segment_captures()
current_file = self.media_files[self.current_index]
# Calculate segment positions - evenly spaced through video
# Initialize arrays
self.segment_caps = [None] * self.segment_count
self.segment_frames = [None] * self.segment_count
self.segment_positions = [0] * self.segment_count # We'll update these as we sample
# BLAZING FAST METHOD: Sample frames at even intervals without seeking
load_start = time.time()
print("Sampling frames at regular intervals (NO SEEKING)...")
shared_cap_start = time.time()
shared_cap = cv2.VideoCapture(str(current_file))
shared_cap_create_time = (time.time() - shared_cap_start) * 1000
print(f"Capture creation: {shared_cap_create_time:.1f}ms")
if shared_cap.isOpened():
frames_start = time.time()
# Calculate sampling interval
sample_interval = max(1, self.total_frames // (self.segment_count * 2)) # Sample more frequently than needed
print(f"Sampling every {sample_interval} frames from {self.total_frames} total frames")
current_frame = 0
segment_index = 0
segments_filled = 0
sample_start = time.time()
while segments_filled < self.segment_count:
ret, frame = shared_cap.read()
if not ret:
break
# Check if this frame should be used for a segment
if segment_index < self.segment_count:
target_frame_for_segment = int((segment_index / max(1, self.segment_count - 1)) * (self.total_frames - 1))
# If we're close enough to the target frame, use this frame
if abs(current_frame - target_frame_for_segment) <= sample_interval:
self.segment_frames[segment_index] = frame.copy()
self.segment_positions[segment_index] = current_frame
print(f"Segment {segment_index}: Frame {current_frame} (target was {target_frame_for_segment})")
segment_index += 1
segments_filled += 1
current_frame += 1
# Skip frames to speed up sampling if we have many frames
if sample_interval > 1:
for _ in range(sample_interval - 1):
ret, _ = shared_cap.read()
if not ret:
break
current_frame += 1
if not ret:
break
sample_time = (time.time() - sample_start) * 1000
frames_time = (time.time() - frames_start) * 1000
print(f"Frame sampling: {sample_time:.1f}ms for {segments_filled} segments")
print(f"Total frame loading: {frames_time:.1f}ms")
shared_cap.release()
else:
print("Failed to create shared capture!")
total_time = time.time() - start_time
print(f"BLAZING FAST Total setup time: {total_time * 1000:.1f}ms")
# Report success
successful_segments = sum(1 for frame in self.segment_frames if frame is not None)
print(f"Successfully sampled {successful_segments}/{self.segment_count} segments")
def setup_segment_captures_lightning_fast(self):
"""LIGHTNING FAST: Use intelligent skipping to get segments in minimal time"""
if not self.is_video(self.media_files[self.current_index]):
return
start_time = time.time()
print(f"Setting up {self.segment_count} segments with LIGHTNING FAST method...")
# Clean up existing segment captures
self.cleanup_segment_captures()
current_file = self.media_files[self.current_index]
# Initialize arrays
self.segment_caps = [None] * self.segment_count
self.segment_frames = [None] * self.segment_count
self.segment_positions = []
# Calculate target positions
for i in range(self.segment_count):
# Position segments at 0%, 25%, 50%, 75% of video (not 0%, 33%, 66%, 100%)
position_ratio = i / self.segment_count # This gives 0, 0.25, 0.5, 0.75
start_frame = int(position_ratio * self.total_frames)
position_ratio = i / max(1, self.segment_count - 1)
start_frame = int(position_ratio * (self.total_frames - 1))
self.segment_positions.append(start_frame)
# Create video captures for each segment
for i, start_frame in enumerate(self.segment_positions):
cap = cv2.VideoCapture(str(current_file))
if cap.isOpened():
cap.set(cv2.CAP_PROP_POS_FRAMES, start_frame)
self.segment_caps.append(cap)
# LIGHTNING FAST: Smart skipping strategy
load_start = time.time()
print("Using SMART SKIPPING strategy...")
shared_cap_start = time.time()
shared_cap = cv2.VideoCapture(str(current_file))
shared_cap_create_time = (time.time() - shared_cap_start) * 1000
print(f"Capture creation: {shared_cap_create_time:.1f}ms")
if shared_cap.isOpened():
frames_start = time.time()
# Strategy: Read a much smaller subset and interpolate/approximate
# Only read 4-6 key frames and generate the rest through approximation
key_frames_to_read = min(6, self.segment_count)
frames_read = 0
for i in range(key_frames_to_read):
target_frame = self.segment_positions[i * (self.segment_count // key_frames_to_read)]
seek_start = time.time()
shared_cap.set(cv2.CAP_PROP_POS_FRAMES, target_frame)
seek_time = (time.time() - seek_start) * 1000
read_start = time.time()
ret, frame = shared_cap.read()
read_time = (time.time() - read_start) * 1000
# Load initial frame for each segment
ret, frame = cap.read()
if ret:
self.segment_frames.append(frame)
# Use this frame for multiple segments (approximation)
segments_per_key = self.segment_count // key_frames_to_read
start_seg = i * segments_per_key
end_seg = min(start_seg + segments_per_key, self.segment_count)
for seg_idx in range(start_seg, end_seg):
self.segment_frames[seg_idx] = frame.copy()
frames_read += 1
print(f"Key frame {i}: Frame {target_frame} -> Segments {start_seg}-{end_seg-1} ({seek_time:.1f}ms + {read_time:.1f}ms)")
else:
self.segment_frames.append(None)
else:
self.segment_caps.append(None)
self.segment_frames.append(None)
print(f"Failed to read key frame {i} at position {target_frame}")
# Fill any remaining segments with the last valid frame
last_valid_frame = None
for frame in self.segment_frames:
if frame is not None:
last_valid_frame = frame
break
if last_valid_frame is not None:
for i in range(len(self.segment_frames)):
if self.segment_frames[i] is None:
self.segment_frames[i] = last_valid_frame.copy()
frames_time = (time.time() - frames_start) * 1000
print(f"Smart frame reading: {frames_time:.1f}ms ({frames_read} key frames for {self.segment_count} segments)")
shared_cap.release()
else:
print("Failed to create shared capture!")
total_time = time.time() - start_time
print(f"LIGHTNING FAST Total setup time: {total_time * 1000:.1f}ms")
# Report success
successful_segments = sum(1 for frame in self.segment_frames if frame is not None)
print(f"Successfully approximated {successful_segments}/{self.segment_count} segments")
def setup_segment_captures(self):
"""Use the lightning fast approximation method for maximum speed"""
self.setup_segment_captures_lightning_fast()
def cleanup_segment_captures(self):
"""Clean up all segment video captures"""
@@ -558,23 +760,118 @@ class MediaGrader:
self.segment_caps = []
self.segment_frames = []
self.segment_positions = []
# Clear frame cache
self.frame_cache.clear()
def update_segment_frames(self):
"""Update frames for all segments during playback"""
if not self.multi_segment_mode or not self.segment_caps:
return
for i, cap in enumerate(self.segment_caps):
def get_cached_frame(self, frame_number: int):
"""Get frame from cache or load it if not cached"""
# Check cache first (thread-safe)
with self.cache_lock:
if frame_number in self.frame_cache:
return self.frame_cache[frame_number].copy() # Return a copy to avoid modification
# Load frame outside of lock to avoid blocking other threads
frame = None
if self.current_cap:
# Create a temporary capture to avoid interfering with main playback
current_file = self.media_files[self.current_index]
temp_cap = cv2.VideoCapture(str(current_file))
if temp_cap.isOpened():
temp_cap.set(cv2.CAP_PROP_POS_FRAMES, frame_number)
ret, frame = temp_cap.read()
temp_cap.release()
if ret and frame is not None:
# Cache the frame (with size limit) - thread-safe
with self.cache_lock:
if len(self.frame_cache) >= self.cache_size_limit:
# Remove oldest cached frames (remove multiple at once for efficiency)
keys_to_remove = sorted(self.frame_cache.keys())[:len(self.frame_cache) // 4]
for key in keys_to_remove:
del self.frame_cache[key]
self.frame_cache[frame_number] = frame.copy()
return frame
return None
def get_segment_capture(self, segment_index):
"""Get or create a capture for a specific segment (lazy loading)"""
if segment_index >= len(self.segment_caps) or self.segment_caps[segment_index] is None:
if segment_index < len(self.segment_caps):
# Create capture on demand
current_file = self.media_files[self.current_index]
cap = cv2.VideoCapture(str(current_file))
if cap.isOpened():
cap.set(cv2.CAP_PROP_POS_FRAMES, self.segment_positions[segment_index])
self.segment_caps[segment_index] = cap
return cap
else:
return None
return None
return self.segment_caps[segment_index]
def update_segment_frame_parallel(self, segment_index):
"""Update a single segment frame"""
try:
cap = self.get_segment_capture(segment_index)
if cap and cap.isOpened():
ret, frame = cap.read()
if ret:
self.segment_frames[i] = frame
return segment_index, frame
else:
# Loop back to segment start when reaching end
cap.set(cv2.CAP_PROP_POS_FRAMES, self.segment_positions[i])
cap.set(cv2.CAP_PROP_POS_FRAMES, self.segment_positions[segment_index])
ret, frame = cap.read()
if ret:
self.segment_frames[i] = frame
return segment_index, frame
else:
return segment_index, None
return segment_index, None
except Exception as e:
print(f"Error updating segment {segment_index}: {e}")
return segment_index, None
def update_segment_frames(self):
"""Update frames for all segments during playback with parallel processing"""
if not self.multi_segment_mode or not self.segment_frames:
return
# Only update segments that have valid frames loaded
active_segments = [i for i, frame in enumerate(self.segment_frames) if frame is not None]
if not active_segments:
return
# Use thread pool for parallel frame updates (but limit to avoid overwhelming)
if len(active_segments) <= 4:
# For small numbers, use parallel processing
futures = []
for i in active_segments:
future = self.thread_pool.submit(self.update_segment_frame_parallel, i)
futures.append(future)
# Collect results
for future in futures:
segment_index, frame = future.result()
if frame is not None:
self.segment_frames[segment_index] = frame
else:
# For larger numbers, process in smaller batches to avoid resource exhaustion
batch_size = 4
for batch_start in range(0, len(active_segments), batch_size):
batch = active_segments[batch_start:batch_start + batch_size]
futures = []
for i in batch:
future = self.thread_pool.submit(self.update_segment_frame_parallel, i)
futures.append(future)
# Collect batch results
for future in futures:
segment_index, frame = future.result()
if frame is not None:
self.segment_frames[segment_index] = frame
def reposition_segments_around_frame(self, center_frame: int):
"""Reposition all segments around a center frame while maintaining spacing"""
@@ -607,27 +904,61 @@ class MediaGrader:
# Reset position for next read
cap.set(cv2.CAP_PROP_POS_FRAMES, self.segment_positions[i])
def seek_all_segments(self, frames_delta: int):
"""Seek all segments by the specified number of frames"""
if not self.multi_segment_mode or not self.segment_caps:
return
for i, cap in enumerate(self.segment_caps):
def seek_segment_parallel(self, segment_index, frames_delta):
"""Seek a single segment by the specified number of frames"""
try:
if segment_index >= len(self.segment_positions):
return segment_index, None
cap = self.get_segment_capture(segment_index)
if cap and cap.isOpened():
current_frame = int(cap.get(cv2.CAP_PROP_POS_FRAMES))
segment_start = self.segment_positions[i]
segment_start = self.segment_positions[segment_index]
segment_duration = self.total_frames // self.segment_count
segment_end = min(self.total_frames - 1, segment_start + segment_duration)
target_frame = max(segment_start, min(current_frame + frames_delta, segment_end))
cap.set(cv2.CAP_PROP_POS_FRAMES, target_frame)
# Load new frame
ret, frame = cap.read()
if ret:
self.segment_frames[i] = frame
# Reset position for next read
# Try cache first for better performance
cached_frame = self.get_cached_frame(target_frame)
if cached_frame is not None:
cap.set(cv2.CAP_PROP_POS_FRAMES, target_frame)
return segment_index, cached_frame
else:
# Fall back to normal seeking
cap.set(cv2.CAP_PROP_POS_FRAMES, target_frame)
ret, frame = cap.read()
if ret:
return segment_index, frame
else:
return segment_index, None
return segment_index, None
except Exception as e:
print(f"Error seeking segment {segment_index}: {e}")
return segment_index, None
def seek_all_segments(self, frames_delta: int):
"""Seek all segments by the specified number of frames with parallel processing"""
if not self.multi_segment_mode or not self.segment_frames:
return
# Only seek segments that have valid frames loaded
active_segments = [i for i, frame in enumerate(self.segment_frames) if frame is not None]
if not active_segments:
return
# Use parallel processing for seeking
futures = []
for i in active_segments:
future = self.thread_pool.submit(self.seek_segment_parallel, i, frames_delta)
futures.append(future)
# Collect results
for future in futures:
segment_index, frame = future.result()
if frame is not None:
self.segment_frames[segment_index] = frame
def display_current_frame(self):
"""Display the current cached frame with overlays"""
@@ -664,7 +995,8 @@ class MediaGrader:
# Draw timeline
self.draw_timeline(frame)
cv2.imshow("Media Grader", frame)
# Maintain aspect ratio when displaying
self.display_with_aspect_ratio(frame)
def display_multi_segment_frame(self):
"""Display multi-segment frame view"""
@@ -697,8 +1029,19 @@ class MediaGrader:
row = i // grid_cols
col = i % grid_cols
# Resize segment frame to fit grid cell
resized_segment = cv2.resize(segment_frame, (segment_width, segment_height))
# Resize segment frame to fit grid cell while maintaining aspect ratio
frame_height, frame_width = segment_frame.shape[:2]
seg_scale_x = segment_width / frame_width
seg_scale_y = segment_height / frame_height
seg_scale = min(seg_scale_x, seg_scale_y)
new_seg_width = int(frame_width * seg_scale)
new_seg_height = int(frame_height * seg_scale)
resized_segment = cv2.resize(segment_frame, (new_seg_width, new_seg_height), interpolation=cv2.INTER_AREA)
# Center the resized segment in the grid cell
y_offset = (segment_height - new_seg_height) // 2
x_offset = (segment_width - new_seg_width) // 2
# Calculate position in combined frame
y_start = row * segment_height
@@ -706,8 +1049,17 @@ class MediaGrader:
x_start = col * segment_width
x_end = x_start + segment_width
# Place segment in combined frame
combined_frame[y_start:y_end, x_start:x_end] = resized_segment
# Place segment in combined frame (centered)
y_place_start = y_start + y_offset
y_place_end = y_place_start + new_seg_height
x_place_start = x_start + x_offset
x_place_end = x_place_start + new_seg_width
# Ensure we don't go out of bounds
y_place_end = min(y_place_end, y_end)
x_place_end = min(x_place_end, x_end)
combined_frame[y_place_start:y_place_end, x_place_start:x_place_end] = resized_segment
# Add segment label
segment_position = int((self.segment_positions[i] / self.total_frames) * 100)
@@ -715,7 +1067,7 @@ class MediaGrader:
cv2.putText(
combined_frame,
label_text,
(x_start + 5, y_start + 20),
(x_place_start + 5, y_place_start + 20),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
(255, 255, 255),
@@ -724,7 +1076,7 @@ class MediaGrader:
cv2.putText(
combined_frame,
label_text,
(x_start + 5, y_start + 20),
(x_place_start + 5, y_place_start + 20),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
(0, 0, 0),
@@ -760,7 +1112,8 @@ class MediaGrader:
# Draw multi-segment timeline
self.draw_multi_segment_timeline(combined_frame)
cv2.imshow("Media Grader", combined_frame)
# Maintain aspect ratio when displaying
self.display_with_aspect_ratio(combined_frame)
def draw_multi_segment_timeline(self, frame):
"""Draw timeline showing all segment positions"""
@@ -1115,6 +1468,9 @@ class MediaGrader:
cv2.namedWindow("Media Grader", cv2.WINDOW_NORMAL)
cv2.setMouseCallback("Media Grader", self.mouse_callback)
# Set initial window size to a reasonable default (will be resized on first frame)
cv2.resizeWindow("Media Grader", 1280, 720)
while self.media_files and self.current_index < len(self.media_files):
current_file = self.media_files[self.current_index]
@@ -1214,6 +1570,10 @@ class MediaGrader:
if self.current_cap:
self.current_cap.release()
self.cleanup_segment_captures()
# Cleanup thread pool
self.thread_pool.shutdown(wait=True)
cv2.destroyAllWindows()
print("Grading session complete!")