Files
pyfa/graphs/data/base/graph.py

239 lines
8.7 KiB
Python

# =============================================================================
# Copyright (C) 2010 Diego Duclos
#
# This file is part of pyfa.
#
# pyfa is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# pyfa is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with pyfa. If not, see <http://www.gnu.org/licenses/>.
# =============================================================================
import math
from abc import ABCMeta, abstractmethod
from collections import OrderedDict
from eos.utils.float import floatUnerr
from service.const import GraphCacheCleanupReason
class FitGraph(metaclass=ABCMeta):
# UI stuff
views = []
viewMap = {}
@classmethod
def register(cls):
FitGraph.views.append(cls)
FitGraph.viewMap[cls.internalName] = cls
def __init__(self):
# Format: {(fit ID, target type, target ID): data}
self._plotCache = {}
@property
@abstractmethod
def name(self):
raise NotImplementedError
@property
@abstractmethod
def internalName(self):
raise NotImplementedError
@property
@abstractmethod
def yDefs(self):
raise NotImplementedError
@property
def yDefMap(self):
return OrderedDict(((y.handle, y.unit), y) for y in self.yDefs)
@property
@abstractmethod
def xDefs(self):
raise NotImplementedError
@property
def xDefMap(self):
return OrderedDict(((x.handle, x.unit), x) for x in self.xDefs)
@property
def inputs(self):
raise NotImplementedError
@property
def inputMap(self):
return OrderedDict(((i.handle, i.unit), i) for i in self.inputs)
@property
def srcExtraCols(self):
return ()
@property
def tgtExtraCols(self):
return ()
srcVectorDef = None
tgtVectorDef = None
hasTargets = False
def getPlotPoints(self, mainInput, miscInputs, xSpec, ySpec, src, tgt=None):
if tgt is not None and tgt.isFit:
tgtType = 'fit'
tgtItemID = tgt.item.ID
elif tgt is not None and tgt.isProfile:
tgtType = 'profile'
tgtItemID = tgt.item.ID
else:
tgtType = None
tgtItemID = None
cacheKey = (src.item.ID, tgtType, tgtItemID)
try:
plotData = self._plotCache[cacheKey][(ySpec, xSpec)]
except KeyError:
plotData = self._calcPlotPoints(
mainInput=mainInput, miscInputs=miscInputs,
xSpec=xSpec, ySpec=ySpec, src=src, tgt=tgt)
self._plotCache.setdefault(cacheKey, {})[(ySpec, xSpec)] = plotData
return plotData
def clearCache(self, reason, extraData=None):
plotKeysToClear = set()
# If fit changed - clear plots which concern this fit
if reason in (GraphCacheCleanupReason.fitChanged, GraphCacheCleanupReason.fitRemoved):
for cacheKey in self._plotCache:
cacheFitID, cacheTgtType, cacheTgtID = cacheKey
if extraData == cacheFitID:
plotKeysToClear.add(cacheKey)
elif cacheTgtType == 'fit' and extraData == cacheTgtID:
plotKeysToClear.add(cacheKey)
# Same for profile
elif reason in (GraphCacheCleanupReason.profileChanged, GraphCacheCleanupReason.profileRemoved):
for cacheKey in self._plotCache:
cacheFitID, cacheTgtType, cacheTgtID = cacheKey
if cacheTgtType == 'profile' and extraData == cacheTgtID:
plotKeysToClear.add(cacheKey)
# Target fit resist mode changed
elif reason == GraphCacheCleanupReason.resistModeChanged:
for cacheKey in self._plotCache:
cacheFitID, cacheTgtType, cacheTgtID = cacheKey
if cacheTgtType == 'fit' and extraData == cacheTgtID:
plotKeysToClear.add(cacheKey)
# Wipe out whole plot cache otherwise
else:
for cacheKey in self._plotCache:
plotKeysToClear.add(cacheKey)
# Do actual cleanup
for cacheKey in plotKeysToClear:
del self._plotCache[cacheKey]
# Process any internal caches graphs might have
self._clearInternalCache(reason, extraData)
def _clearInternalCache(self, reason, extraData):
return
# Calculation stuff
def _calcPlotPoints(self, mainInput, miscInputs, xSpec, ySpec, src, tgt):
mainParamRange, miscParams = self._normalizeInputs(
mainInput=mainInput, miscInputs=miscInputs,
src=src, tgt=tgt)
mainParamRange, miscParams = self._limitParams(
mainParamRange=mainParamRange, miscParams=miscParams,
src=src, tgt=tgt)
xs, ys = self._getPoints(
xRange=mainParamRange[1], miscParams=miscParams,
xSpec=xSpec, ySpec=ySpec, src=src, tgt=tgt)
ys = self._denormalizeValues(values=ys, axisSpec=ySpec, src=src, tgt=tgt)
# Sometimes x denormalizer may fail (e.g. during conversion of 0 ship speed to %).
# If both inputs and outputs are in %, do some extra processing to at least have
# proper graph which shows the same value over whole specified relative parameter
# range
try:
xs = self._denormalizeValues(values=xs, axisSpec=xSpec, src=src, tgt=tgt)
except ZeroDivisionError:
if mainInput.unit == xSpec.unit == '%' and len(set(floatUnerr(y) for y in ys)) == 1:
xs = [min(mainInput.value), max(mainInput.value)]
ys = [ys[0], ys[0]]
else:
raise
else:
# Same for NaN which means we tried to denormalize infinity values, which might be the
# case for the ideal target profile with infinite signature radius
if mainInput.unit == xSpec.unit == '%' and all(math.isnan(x) for x in xs):
xs = [min(mainInput.value), max(mainInput.value)]
ys = [ys[0], ys[0]]
return xs, ys
_normalizers = {}
def _normalizeInputs(self, mainInput, miscInputs, src, tgt):
key = (mainInput.handle, mainInput.unit)
if key in self._normalizers:
normalizer = self._normalizers[key]
mainParamRange = (mainInput.handle, tuple(normalizer(v, src, tgt) for v in mainInput.value))
else:
mainParamRange = (mainInput.handle, mainInput.value)
miscParams = {}
for miscInput in miscInputs:
key = (miscInput.handle, miscInput.unit)
if key in self._normalizers:
normalizer = self._normalizers[key]
miscParams[miscInput.handle] = normalizer(miscInput.value, src, tgt)
else:
miscParams[miscInput.handle] = miscInput.value
return mainParamRange, miscParams
_limiters = {}
def _limitParams(self, mainParamRange, miscParams, src, tgt):
def limitToRange(val, limitRange):
if val is None:
return None
val = max(val, min(limitRange))
val = min(val, max(limitRange))
return val
mainHandle, mainValue = mainParamRange
if mainHandle in self._limiters:
limiter = self._limiters[mainHandle]
mainParamRange = (mainHandle, tuple(limitToRange(v, limiter(src, tgt)) for v in mainValue))
for miscHandle in miscParams:
if miscHandle in self._limiters:
limiter = self._limiters[miscHandle]
miscValue = miscParams[miscHandle]
miscParams[miscHandle] = limitToRange(miscValue, limiter(src, tgt))
return mainParamRange, miscParams
_getters = {}
def _getPoints(self, xRange, miscParams, xSpec, ySpec, src, tgt):
try:
getterClass = self._getters[(xSpec.handle, ySpec.handle)]
except KeyError:
return [], []
else:
getter = getterClass(graph=self)
return getter.getRange(xRange=xRange, miscParams=miscParams, src=src, tgt=tgt)
_denormalizers = {}
def _denormalizeValues(self, values, axisSpec, src, tgt):
key = (axisSpec.handle, axisSpec.unit)
if key in self._denormalizers:
denormalizer = self._denormalizers[key]
values = [denormalizer(v, src, tgt) for v in values]
return values