Files
pyfa/gui/builtinGraphs/fitDamageStats/calc.py

382 lines
16 KiB
Python

# =============================================================================
# Copyright (C) 2010 Diego Duclos
#
# This file is part of pyfa.
#
# pyfa is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# pyfa is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with pyfa. If not, see <http://www.gnu.org/licenses/>.
# =============================================================================
import math
from functools import lru_cache
from eos.saveddata.fit import Fit
from service.const import GraphDpsDroneMode
from service.settings import GraphSettings
from .helper import getTgtMaxVelocity, getTgtSigRadius, getTgtRadius
def getTurretMult(mod, fit, tgt, atkSpeed, atkAngle, distance, tgtSpeed, tgtAngle, tgtSigRadius):
cth = _calcTurretChanceToHit(
atkSpeed=atkSpeed,
atkAngle=atkAngle,
atkRadius=fit.ship.getModifiedItemAttr('radius'),
atkOptimalRange=mod.maxRange,
atkFalloffRange=mod.falloff,
atkTracking=mod.getModifiedItemAttr('trackingSpeed'),
atkOptimalSigRadius=mod.getModifiedItemAttr('optimalSigRadius'),
distance=distance,
tgtSpeed=tgtSpeed,
tgtAngle=tgtAngle,
tgtRadius=getTgtRadius(tgt),
tgtSigRadius=tgtSigRadius)
mult = _calcTurretMult(cth)
return mult
def getLauncherMult(mod, fit, distance, tgtSpeed, tgtSigRadius):
modRange = mod.maxRange
if modRange is None:
return 0
if distance + fit.ship.getModifiedItemAttr('radius') > modRange:
return 0
mult = _calcMissileFactor(
atkEr=mod.getModifiedChargeAttr('aoeCloudSize'),
atkEv=mod.getModifiedChargeAttr('aoeVelocity'),
atkDrf=mod.getModifiedChargeAttr('aoeDamageReductionFactor'),
tgtSpeed=tgtSpeed,
tgtSigRadius=tgtSigRadius)
return mult
def getSmartbombMult(mod, distance):
modRange = mod.maxRange
if modRange is None:
return 0
if distance > modRange:
return 0
return 1
def getDoomsdayMult(mod, tgt, distance, tgtSigRadius):
modRange = mod.maxRange
# Single-target DDs have no range limit
if modRange and distance > modRange:
return 0
# Single-target titan DDs are vs capitals only
if {'superWeaponAmarr', 'superWeaponCaldari', 'superWeaponGallente', 'superWeaponMinmatar'}.intersection(mod.item.effects):
# Disallow only against subcap fits, allow against cap fits and tgt profiles
if isinstance(tgt, Fit) and not tgt.ship.item.requiresSkill('Capital Ships'):
return 0
damageSig = mod.getModifiedItemAttr('doomsdayDamageRadius') or mod.getModifiedItemAttr('signatureRadius')
if not damageSig:
return 1
return min(1, tgtSigRadius / damageSig)
def getBombMult(mod, fit, tgt, distance, tgtSigRadius):
modRange = mod.maxRange
if modRange is None:
return 0
blastRadius = mod.getModifiedChargeAttr('explosionRange')
atkRadius = fit.ship.getModifiedItemAttr('radius')
tgtRadius = getTgtRadius(tgt)
# Bomb starts in the center of the ship
# Also here we assume that it affects target as long as blast
# touches its surface, not center - I did not check this
if distance < max(0, modRange - atkRadius - tgtRadius - blastRadius):
return 0
if distance > max(0, modRange - atkRadius + tgtRadius + blastRadius):
return 0
return _calcBombFactor(
atkEr=mod.getModifiedChargeAttr('aoeCloudSize'),
tgtSigRadius=tgtSigRadius)
def getGuidedBombMult(mod, fit, distance, tgtSigRadius):
modRange = mod.maxRange
if modRange is None:
return 0
if distance > modRange - fit.ship.getModifiedItemAttr('radius'):
return 0
eR = mod.getModifiedChargeAttr('aoeCloudSize')
if eR == 0:
return 1
else:
return min(1, tgtSigRadius / eR)
def getDroneMult(drone, fit, tgt, atkSpeed, atkAngle, distance, tgtSpeed, tgtAngle, tgtSigRadius):
if distance > fit.extraAttributes['droneControlRange']:
return 0
droneSpeed = drone.getModifiedItemAttr('maxVelocity')
# Hard to simulate drone behavior, so assume chance to hit is 1 for mobile drones
# which catch up with target
droneOpt = GraphSettings.getInstance().get('mobileDroneMode')
if (
droneSpeed > 1 and (
(droneOpt == GraphDpsDroneMode.auto and droneSpeed >= tgtSpeed) or
droneOpt == GraphDpsDroneMode.followTarget)
):
cth = 1
# Otherwise put the drone into center of the ship, move it at its max speed or ship's speed
# (whichever is lower) towards direction of attacking ship and see how well it projects
else:
droneRadius = drone.getModifiedItemAttr('radius')
cth = _calcTurretChanceToHit(
atkSpeed=min(atkSpeed, droneSpeed),
atkAngle=atkAngle,
atkRadius=droneRadius,
atkOptimalRange=drone.maxRange,
atkFalloffRange=drone.falloff,
atkTracking=drone.getModifiedItemAttr('trackingSpeed'),
atkOptimalSigRadius=drone.getModifiedItemAttr('optimalSigRadius'),
# As distance is ship surface to ship surface, we adjust it according
# to attacker fit's radiuses to have drone surface to ship surface distance
distance=distance + fit.ship.getModifiedItemAttr('radius') - droneRadius,
tgtSpeed=tgtSpeed,
tgtAngle=tgtAngle,
tgtRadius=getTgtRadius(tgt),
tgtSigRadius=tgtSigRadius)
mult = _calcTurretMult(cth)
return mult
def getFighterAbilityMult(fighter, ability, fit, distance, tgtSpeed, tgtSigRadius):
fighterSpeed = fighter.getModifiedItemAttr('maxVelocity')
attrPrefix = ability.attrPrefix
# It's bomb attack
if attrPrefix == 'fighterAbilityLaunchBomb':
# Just assume we can land bomb anywhere
return _calcBombFactor(
atkEr=fighter.getModifiedChargeAttr('aoeCloudSize'),
tgtSigRadius=tgtSigRadius)
droneOpt = GraphSettings.getInstance().get('mobileDroneMode')
# It's regular missile-based attack
if (droneOpt == GraphDpsDroneMode.auto and fighterSpeed >= tgtSpeed) or droneOpt == GraphDpsDroneMode.followTarget:
rangeFactor = 1
# Same as with drones, if fighters are slower - put them to center of
# the ship and see how they apply
else:
rangeFactor = _calcRangeFactor(
atkOptimalRange=fighter.getModifiedItemAttr('{}RangeOptimal'.format(attrPrefix)),
atkFalloffRange=fighter.getModifiedItemAttr('{}RangeFalloff'.format(attrPrefix)),
distance=distance + fit.ship.getModifiedItemAttr('radius') - fighter.getModifiedItemAttr('radius'))
drf = fighter.getModifiedItemAttr('{}ReductionFactor'.format(attrPrefix), None)
if drf is None:
drf = fighter.getModifiedItemAttr('{}DamageReductionFactor'.format(attrPrefix))
drs = fighter.getModifiedItemAttr('{}ReductionSensitivity'.format(attrPrefix), None)
if drs is None:
drs = fighter.getModifiedItemAttr('{}DamageReductionSensitivity'.format(attrPrefix))
missileFactor = _calcMissileFactor(
atkEr=fighter.getModifiedItemAttr('{}ExplosionRadius'.format(attrPrefix)),
atkEv=fighter.getModifiedItemAttr('{}ExplosionVelocity'.format(attrPrefix)),
atkDrf=_calcAggregatedDrf(reductionFactor=drf, reductionSensitivity=drs),
tgtSpeed=tgtSpeed,
tgtSigRadius=tgtSigRadius)
mult = rangeFactor * missileFactor
return mult
def getWebbedSpeed(fit, tgt, currentUnwebbedSpeed, webMods, webDrones, webFighters, distance):
# Can slow down non-immune fits and target profiles
if isinstance(tgt, Fit) and tgt.ship.getModifiedItemAttr('disallowOffensiveModifiers'):
return currentUnwebbedSpeed
maxUnwebbedSpeed = getTgtMaxVelocity(tgt)
try:
speedRatio = currentUnwebbedSpeed / maxUnwebbedSpeed
except ZeroDivisionError:
currentWebbedSpeed = 0
else:
appliedMultipliers = {}
# Modules first, they are applied always the same way
for wData in webMods:
appliedBoost = wData.boost * _calcRangeFactor(
atkOptimalRange=wData.optimal,
atkFalloffRange=wData.falloff,
distance=distance)
if appliedBoost:
appliedMultipliers.setdefault(wData.stackingGroup, []).append((1 + appliedBoost / 100, wData.resAttrID))
maxWebbedSpeed = getTgtMaxVelocity(tgt, extraMultipliers=appliedMultipliers)
currentWebbedSpeed = maxWebbedSpeed * speedRatio
# Drones and fighters
mobileWebs = []
mobileWebs.extend(webFighters)
# Drones have range limit
if distance <= fit.extraAttributes['droneControlRange']:
mobileWebs.extend(webDrones)
atkRadius = fit.ship.getModifiedItemAttr('radius')
# As mobile webs either follow the target or stick to the attacking ship,
# if target is within mobile web optimal - it can be applied unconditionally
longEnoughMws = [mw for mw in mobileWebs if distance <= mw.optimal - atkRadius + mw.radius]
if longEnoughMws:
for mwData in longEnoughMws:
appliedMultipliers.setdefault(mwData.stackingGroup, []).append((1 + mwData.boost / 100, mwData.resAttrID))
mobileWebs.remove(mwData)
maxWebbedSpeed = getTgtMaxVelocity(tgt, extraMultipliers=appliedMultipliers)
currentWebbedSpeed = maxWebbedSpeed * speedRatio
# Apply remaining webs, from fastest to slowest
droneOpt = GraphSettings.getInstance().get('mobileDroneMode')
while mobileWebs:
# Process in batches unified by speed to save up resources
fastestMwSpeed = max(mobileWebs, key=lambda mw: mw.speed).speed
fastestMws = [mw for mw in mobileWebs if mw.speed == fastestMwSpeed]
for mwData in fastestMws:
# Faster than target or set to follow it - apply full slowdown
if (droneOpt == GraphDpsDroneMode.auto and mwData.speed >= currentWebbedSpeed) or droneOpt == GraphDpsDroneMode.followTarget:
appliedMwBoost = mwData.boost
# Otherwise project from the center of the ship
else:
appliedMwBoost = mwData.boost * _calcRangeFactor(
atkOptimalRange=mwData.optimal,
atkFalloffRange=mwData.falloff,
distance=distance + atkRadius - mwData.radius)
appliedMultipliers.setdefault(mwData.stackingGroup, []).append((1 + appliedMwBoost / 100, mwData.resAttrID))
mobileWebs.remove(mwData)
maxWebbedSpeed = getTgtMaxVelocity(tgt, extraMultipliers=appliedMultipliers)
currentWebbedSpeed = maxWebbedSpeed * speedRatio
return currentWebbedSpeed
def getTpMult(fit, tgt, tgtSpeed, tpMods, tpDrones, tpFighters, distance):
# Can blow non-immune fits and target profiles
if isinstance(tgt, Fit) and tgt.ship.getModifiedItemAttr('disallowOffensiveModifiers'):
return 1
untpedSig = getTgtSigRadius(tgt)
# Modules
appliedMultipliers = {}
for tpData in tpMods:
appliedBoost = tpData.boost * _calcRangeFactor(
atkOptimalRange=tpData.optimal,
atkFalloffRange=tpData.falloff,
distance=distance)
if appliedBoost:
appliedMultipliers.setdefault(tpData.stackingGroup, []).append((1 + appliedBoost / 100, tpData.resAttrID))
# Drones and fighters
mobileTps = []
mobileTps.extend(tpFighters)
# Drones have range limit
if distance <= fit.extraAttributes['droneControlRange']:
mobileTps.extend(tpDrones)
droneOpt = GraphSettings.getInstance().get('mobileDroneMode')
atkRadius = fit.ship.getModifiedItemAttr('radius')
for mtpData in mobileTps:
# Faster than target or set to follow it - apply full TP
if (droneOpt == GraphDpsDroneMode.auto and mtpData.speed >= tgtSpeed) or droneOpt == GraphDpsDroneMode.followTarget:
appliedMtpBoost = mtpData.boost
# Otherwise project from the center of the ship
else:
appliedMtpBoost = mtpData.boost * _calcRangeFactor(
atkOptimalRange=mtpData.optimal,
atkFalloffRange=mtpData.falloff,
distance=distance + atkRadius - mtpData.radius)
appliedMultipliers.setdefault(mtpData.stackingGroup, []).append((1 + appliedMtpBoost / 100, mtpData.resAttrID))
tpedSig = getTgtSigRadius(tgt, extraMultipliers=appliedMultipliers)
if tpedSig == math.inf and untpedSig == math.inf:
return 1
mult = tpedSig / untpedSig
return mult
# Turret-specific
@lru_cache(maxsize=50)
def _calcTurretMult(chanceToHit):
"""Calculate damage multiplier for turret-based weapons."""
# https://wiki.eveuniversity.org/Turret_mechanics#Damage
wreckingChance = min(chanceToHit, 0.01)
wreckingPart = wreckingChance * 3
normalChance = chanceToHit - wreckingChance
if normalChance > 0:
avgDamageMult = (0.01 + chanceToHit) / 2 + 0.49
normalPart = normalChance * avgDamageMult
else:
normalPart = 0
totalMult = normalPart + wreckingPart
return totalMult
@lru_cache(maxsize=1000)
def _calcTurretChanceToHit(
atkSpeed, atkAngle, atkRadius, atkOptimalRange, atkFalloffRange, atkTracking, atkOptimalSigRadius,
distance, tgtSpeed, tgtAngle, tgtRadius, tgtSigRadius
):
"""Calculate chance to hit for turret-based weapons."""
# https://wiki.eveuniversity.org/Turret_mechanics#Hit_Math
angularSpeed = _calcAngularSpeed(atkSpeed, atkAngle, atkRadius, distance, tgtSpeed, tgtAngle, tgtRadius)
rangeFactor = _calcRangeFactor(atkOptimalRange, atkFalloffRange, distance)
trackingFactor = _calcTrackingFactor(atkTracking, atkOptimalSigRadius, angularSpeed, tgtSigRadius)
cth = rangeFactor * trackingFactor
return cth
def _calcAngularSpeed(atkSpeed, atkAngle, atkRadius, distance, tgtSpeed, tgtAngle, tgtRadius):
"""Calculate angular speed based on mobility parameters of two ships."""
atkAngle = atkAngle * math.pi / 180
tgtAngle = tgtAngle * math.pi / 180
ctcDistance = atkRadius + distance + tgtRadius
# Target is to the right of the attacker, so transversal is projection onto Y axis
transSpeed = abs(atkSpeed * math.sin(atkAngle) - tgtSpeed * math.sin(tgtAngle))
if ctcDistance == 0:
angularSpeed = 0 if transSpeed == 0 else math.inf
else:
angularSpeed = transSpeed / ctcDistance
return angularSpeed
def _calcTrackingFactor(atkTracking, atkOptimalSigRadius, angularSpeed, tgtSigRadius):
"""Calculate tracking chance to hit component."""
return 0.5 ** (((angularSpeed * atkOptimalSigRadius) / (atkTracking * tgtSigRadius)) ** 2)
# Missile-specific
@lru_cache(maxsize=200)
def _calcMissileFactor(atkEr, atkEv, atkDrf, tgtSpeed, tgtSigRadius):
"""Missile application."""
factors = [1]
# "Slow" part
if atkEr > 0:
factors.append(tgtSigRadius / atkEr)
# "Fast" part
if tgtSpeed > 0:
factors.append(((atkEv * tgtSigRadius) / (atkEr * tgtSpeed)) ** atkDrf)
totalMult = min(factors)
return totalMult
def _calcAggregatedDrf(reductionFactor, reductionSensitivity):
"""
Sometimes DRF is specified as 2 separate numbers,
here we combine them into generic form.
"""
return math.log(reductionFactor) / math.log(reductionSensitivity)
# Generic
def _calcRangeFactor(atkOptimalRange, atkFalloffRange, distance):
"""Range strength/chance factor, applicable to guns, ewar, RRs, etc."""
if atkFalloffRange > 0:
factor = 0.5 ** ((max(0, distance - atkOptimalRange) / atkFalloffRange) ** 2)
elif distance <= atkOptimalRange:
factor = 1
else:
factor = 0
return factor
def _calcBombFactor(atkEr, tgtSigRadius):
if atkEr == 0:
return 1
else:
return min(1, tgtSigRadius / atkEr)