Files
pyfa/gui/builtinGraphs/base.py
2019-07-26 13:07:33 +03:00

261 lines
9.0 KiB
Python

# =============================================================================
# Copyright (C) 2010 Diego Duclos
#
# This file is part of pyfa.
#
# pyfa is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# pyfa is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with pyfa. If not, see <http://www.gnu.org/licenses/>.
# =============================================================================
import math
from abc import ABCMeta, abstractmethod
from collections import OrderedDict, namedtuple
from eos.saveddata.fit import Fit
from eos.saveddata.targetProfile import TargetProfile
from eos.utils.float import floatUnerr
from service.const import GraphCacheCleanupReason
YDef = namedtuple('YDef', ('handle', 'unit', 'label'))
XDef = namedtuple('XDef', ('handle', 'unit', 'label', 'mainInput'))
Input = namedtuple('Input', ('handle', 'unit', 'label', 'iconID', 'defaultValue', 'defaultRange', 'mainOnly'))
VectorDef = namedtuple('VectorDef', ('lengthHandle', 'lengthUnit', 'angleHandle', 'angleUnit', 'label'))
class FitGraph(metaclass=ABCMeta):
# UI stuff
views = []
viewMap = {}
@classmethod
def register(cls):
FitGraph.views.append(cls)
FitGraph.viewMap[cls.internalName] = cls
def __init__(self):
# Format: {(fit ID, target type, target ID): data}
self._plotCache = {}
@property
@abstractmethod
def name(self):
raise NotImplementedError
@property
@abstractmethod
def internalName(self):
raise NotImplementedError
@property
@abstractmethod
def yDefs(self):
raise NotImplementedError
@property
def yDefMap(self):
return OrderedDict(((y.handle, y.unit), y) for y in self.yDefs)
@property
@abstractmethod
def xDefs(self):
raise NotImplementedError
@property
def xDefMap(self):
return OrderedDict(((x.handle, x.unit), x) for x in self.xDefs)
@property
def inputs(self):
raise NotImplementedError
@property
def inputMap(self):
return OrderedDict(((i.handle, i.unit), i) for i in self.inputs)
@property
def srcExtraCols(self):
return ()
@property
def tgtExtraCols(self):
return ()
srcVectorDef = None
tgtVectorDef = None
hasTargets = False
def getPlotPoints(self, mainInput, miscInputs, xSpec, ySpec, fit, tgt=None):
if isinstance(tgt, Fit):
tgtType = 'fit'
elif isinstance(tgt, TargetProfile):
tgtType = 'profile'
else:
tgtType = None
cacheKey = (fit.ID, tgtType, getattr(tgt, 'ID', None))
try:
plotData = self._plotCache[cacheKey][(ySpec, xSpec)]
except KeyError:
plotData = self._calcPlotPoints(mainInput, miscInputs, xSpec, ySpec, fit, tgt)
self._plotCache.setdefault(cacheKey, {})[(ySpec, xSpec)] = plotData
return plotData
def clearCache(self, reason, extraData=None):
# If only one fit changed - clear plots which concern this fit
if reason in (GraphCacheCleanupReason.fitChanged, GraphCacheCleanupReason.fitRemoved):
# Clear plot cache
plotKeysToClear = set()
for cacheKey in self._plotCache:
cacheFitID, cacheTgtType, cacheTgtID = cacheKey
if extraData == cacheFitID:
plotKeysToClear.add(cacheKey)
elif cacheTgtType == 'fit' and extraData == cacheTgtID:
plotKeysToClear.add(cacheKey)
for cacheKey in plotKeysToClear:
del self._plotCache[cacheKey]
# Wipe out whole plot cache otherwise
else:
self._plotCache.clear()
# And process any internal caches graphs might have
self._clearInternalCache(reason, extraData)
def _clearInternalCache(self, reason, extraData):
return
# Calculation stuff
def _calcPlotPoints(self, mainInput, miscInputs, xSpec, ySpec, fit, tgt):
mainParam, miscParams = self._normalizeParams(mainInput, miscInputs, fit, tgt)
mainParam, miscParams = self._limitParams(mainParam, miscParams, fit, tgt)
xs, ys = self._getPoints(mainParam, miscParams, xSpec, ySpec, fit, tgt)
ys = self._denormalizeValues(ys, ySpec, fit, tgt)
# Sometimes x denormalizer may fail (e.g. during conversion of 0 ship speed to %).
# If both inputs and outputs are in %, do some extra processing to at least have
# proper graph which shows that fit has the same value over whole specified
# relative parameter range
try:
xs = self._denormalizeValues(xs, xSpec, fit, tgt)
except ZeroDivisionError:
if mainInput.unit == xSpec.unit == '%' and len(set(floatUnerr(y) for y in ys)) == 1:
xs = [min(mainInput.value), max(mainInput.value)]
ys = [ys[0], ys[0]]
else:
raise
else:
# Same for NaN which means we tried to denormalize infinity values, which might be the
# case for the ideal target profile with infinite signature radius
if mainInput.unit == xSpec.unit == '%' and all(math.isnan(x) for x in xs):
xs = [min(mainInput.value), max(mainInput.value)]
ys = [ys[0], ys[0]]
return xs, ys
_normalizers = {}
def _normalizeParams(self, mainInput, miscInputs, fit, tgt):
key = (mainInput.handle, mainInput.unit)
if key in self._normalizers:
normalizer = self._normalizers[key]
newMainInput = (mainInput.handle, tuple(normalizer(v, fit, tgt) for v in mainInput.value))
else:
newMainInput = (mainInput.handle, mainInput.value)
newMiscInputs = []
for miscInput in miscInputs:
key = (miscInput.handle, miscInput.unit)
if key in self._normalizers:
normalizer = self._normalizers[key]
newMiscInput = (miscInput.handle, normalizer(miscInput.value, fit, tgt))
else:
newMiscInput = (miscInput.handle, miscInput.value)
newMiscInputs.append(newMiscInput)
return newMainInput, newMiscInputs
_limiters = {}
def _limitParams(self, mainInput, miscInputs, fit, tgt):
def limitToRange(val, limitRange):
if val is None:
return None
val = max(val, min(limitRange))
val = min(val, max(limitRange))
return val
mainHandle, mainValue = mainInput
if mainHandle in self._limiters:
limiter = self._limiters[mainHandle]
newMainInput = (mainHandle, tuple(limitToRange(v, limiter(fit, tgt)) for v in mainValue))
else:
newMainInput = mainInput
newMiscInputs = []
for miscInput in miscInputs:
miscHandle, miscValue = miscInput
if miscHandle in self._limiters:
limiter = self._limiters[miscHandle]
newMiscInput = (miscHandle, limitToRange(miscValue, limiter(fit, tgt)))
newMiscInputs.append(newMiscInput)
else:
newMiscInputs.append(miscInput)
return newMainInput, newMiscInputs
_getters = {}
def _getPoints(self, mainInput, miscInputs, xSpec, ySpec, fit, tgt):
try:
getter = self._getters[(xSpec.handle, ySpec.handle)]
except KeyError:
return [], []
else:
return getter(self, mainInput, miscInputs, fit, tgt)
_denormalizers = {}
def _denormalizeValues(self, values, axisSpec, fit, tgt):
key = (axisSpec.handle, axisSpec.unit)
if key in self._denormalizers:
denormalizer = self._denormalizers[key]
values = [denormalizer(v, fit, tgt) for v in values]
return values
def _iterLinear(self, valRange, segments=200):
rangeLow = min(valRange)
rangeHigh = max(valRange)
# Amount is amount of ranges between points here, not amount of points
step = (rangeHigh - rangeLow) / segments
if step == 0 or math.isnan(step):
yield rangeLow
else:
current = rangeLow
# Take extra half step to make sure end of range is always included
# despite any possible float errors
while current <= (rangeHigh + step / 2):
yield current
current += step
class FitDataCache:
def __init__(self):
self._data = {}
def clearForFit(self, fitID):
if fitID in self._data:
del self._data[fitID]
def clearAll(self):
self._data.clear()
# noinspection PyUnresolvedReferences
from gui.builtinGraphs import *