Rework number formatter to avoid silly stuff like formatting 999999 with precision of 3 to 1000k instead of 1M

This commit is contained in:
DarkPhoenix
2011-06-24 21:37:41 +04:00
parent 18b43bea41
commit 3488a5d26e
3 changed files with 93 additions and 59 deletions

View File

@@ -142,15 +142,15 @@ class PriceViewFull(StatsView):
shipPrice = 0
modPrice = sum(map(lambda p: p.price or 0, prices[1:]))
if self._cachedShip != shipPrice:
self.labelPriceShip.SetLabel("%s ISK" % formatAmount(shipPrice, 3, 3, 9))
self.labelPriceShip.SetLabel("%s ISK" % formatAmount(shipPrice, 3, 3, 9, currency=True))
self.labelPriceShip.SetToolTip(wx.ToolTip("%.2f ISK" % shipPrice))
self._cachedShip = shipPrice
if self._cachedFittings != modPrice:
self.labelPriceFittings.SetLabel("%s ISK" % formatAmount(modPrice, 3, 3, 9))
self.labelPriceFittings.SetLabel("%s ISK" % formatAmount(modPrice, 3, 3, 9, currency=True))
self.labelPriceFittings.SetToolTip(wx.ToolTip("%.2f ISK" % modPrice))
self._cachedFittings = modPrice
if self._cachedTotal != (shipPrice+modPrice):
self.labelPriceTotal.SetLabel("%s ISK" % formatAmount(shipPrice + modPrice, 3, 3, 9))
self.labelPriceTotal.SetLabel("%s ISK" % formatAmount(shipPrice + modPrice, 3, 3, 9, currency=True))
self.labelPriceTotal.SetToolTip(wx.ToolTip("%.2f ISK" % (shipPrice + modPrice)))
self._cachedTotal = shipPrice + modPrice
self.panel.Layout()

View File

@@ -37,12 +37,12 @@ class Price(ViewColumn):
sMarket = service.Market.getInstance()
price = sMarket.getPriceNow(stuff.item.ID)
return formatAmount(price.price, 3, 3, 9) if price and price.price else False
return formatAmount(price.price, 3, 3, 9, currency=True) if price and price.price else False
def delayedText(self, mod, display, colItem):
def callback(requests):
price = requests[0].price
colItem.SetText(formatAmount(price, 3, 3, 9) if price else "")
colItem.SetText(formatAmount(price, 3, 3, 9, currency=True) if price else "")
display.SetItem(colItem)
service.Market.getInstance().getPrices([mod.item.ID], callback)

View File

@@ -1,74 +1,108 @@
import math
def formatAmount(val, prec=3, lowest=0, highest=0):
def formatAmount(val, prec=3, lowest=0, highest=0, currency=False):
"""
Add suffix to value, transform value to match new suffix and round it.
Keyword arguments:
val -- value to process
prec -- precision of final number (number of significant positions to show)
lowest -- lowest order for suffixizing
highest -- highest order for suffixizing
lowest -- lowest order for suffixizing for numbers 0 < |num| < 1
highest -- highest order for suffixizing for numbers |num| > 1
currency -- if currency, billion suffix will be B instead of G
"""
if val is None:
result = ""
else:
# Separate value to mantissa and suffix
mantissa, suffix = suffixizeAmount(val, lowest, highest)
# Round mantissa and add suffix
newMantissa = processAmount(mantissa, prec)
result = u"{0}{1}".format(newMantissa, suffix)
return result
def suffixizeAmount(val, lowest=-6, highest=9):
"""
Add suffix to value and transform value to match new suffix.
Keyword arguments:
val -- value to process
lowest -- lowest order for suffixizing
highest -- highest order for suffixizing
Suffixes below lowest and above highest orders won't be used.
"""
if abs(val) >= 1000 and highest >= 3:
suffixmap = {3 : "k", 6 : "M", 9 : "B"}
return ""
# Define suffix maps
posSuffixMap = {3: "k", 6: "M", 9: "B" if currency is True else "G"}
negSuffixMap = {-6: u'\u03bc', -3: "m"}
# Define tuple of the map keys
# As we're going to go from the biggest order of abs(key), sort
# them differently due to one set of values being negative
# and other positive
posOrders = tuple(sorted(posSuffixMap.iterkeys(), reverse=True))
negOrders = tuple(sorted(negSuffixMap.iterkeys(), reverse=False))
# Find the least abs(key)
posLowest = min(posOrders)
negHighest = max(negOrders)
# By default, mantissa takes just value and no suffix
mantissa, suffix = val, ""
# Positive suffixes
if abs(val) > 1 and highest >= posLowest:
# Start from highest possible suffix
for key in sorted(suffixmap, reverse = True):
for key in posOrders:
# Find first suitable suffix and check if it's not above highest order
if abs(val) >= 10**key and key <= highest:
return val/float(10**key), suffixmap[key]
mantissa, suffix = val/float(10**key), posSuffixMap[key]
# Do additional step to eliminate results like 999999 => 1000k
# If we're already using our greatest order, we can't do anything useful
if posOrders.index(key) == 0:
break
else:
# Get order greater than current
prevKey = posOrders[posOrders.index(key) - 1]
# Check if the key to which we potentially can change is greater
# than our highest boundary
if prevKey > highest:
# If it is, bail - we already have acceptable results
break
# Find multiplier to get from one order to another
orderDiff = 10**(prevKey - key)
# If rounded mantissa according to our specifications is greater than
# or equal to multiplier
if roundToPrec(mantissa, prec) >= orderDiff:
# Divide mantissa and use suffix of greater order
mantissa, suffix = mantissa/orderDiff, posSuffixMap[prevKey]
# Otherwise consider current results as acceptable
break
# Take numbers between 0 and 1, and matching/below highest possible negative suffix
elif abs(val) < 1 and val != 0 and lowest <= -3:
suffixmap = {-6 : u'\u03bc', -3 : "m"}
elif abs(val) < 1 and val != 0 and lowest <= negHighest:
# Start from lowest possible suffix
for key in sorted(suffixmap, reverse = False):
for key in negOrders:
# Get next order
try:
nextKey = negOrders[negOrders.index(key) + 1]
except IndexError:
nextKey = 0
# Check if mantissa with next suffix is in range [1, 1000)
# Here we assume that each next order is greater than previous by 3
if abs(val) < 10**(key+3) and key >= lowest:
return val/float(10**key), suffixmap[key]
# If no suitable suffixes are found within given order borders, or value
# is already within [1, 1000) boundaries, just return rounded value with no suffix
else:
return val, ""
def processAmount(val, prec=3):
"""
Round number and return as string.
Keyword arguments:
val -- value to round
prec -- precision of final number (number of significant positions to show)
Integer numbers are not rounded, only fractional part.
"""
if val == 0: # Logarithm is not defined for zero
return "0"
if abs(val) < 10**(nextKey) and key >= lowest:
mantissa, suffix = val/float(10**key), negSuffixMap[key]
# Do additional step to eliminate results like 0.9999 => 1000m
# Check if the key we're potentially switching to is greater than our
# upper boundary
if nextKey > highest:
# If it is, leave loop with results we already have
break
# Find the multiplier between current and next order
orderDiff = 10**(nextKey - key)
# If rounded mantissa according to our specifications is greater than
# or equal to multiplier
if roundToPrec(mantissa, prec) >= orderDiff:
# Divide mantissa and use suffix of greater order
# Use special handling of zero key as it's not on the map
mantissa, suffix = mantissa/orderDiff, posSuffixMap[nextKey] if nextKey != 0 else ""
# Otherwise consider current results as acceptable
break
# Round mantissa according to our prec variable
mantissa = roundToPrec(mantissa, prec)
# Round mantissa and add suffix
result = u"{0}{1}".format(mantissa, suffix)
return result
def roundToPrec(val, prec):
# We're not rounding integers anyway
# Also make sure that we do not ask to calculate logarithm of zero
if int(val) == val:
return int(val)
# Find round factor, taking into consideration that we want to keep at least prec
# positions for fractions with zero integer part (e.g. 0.0000354 for prec=3)
roundFactor = int(prec - math.ceil(math.log10(abs(val))))
# But we don't want to round integers
if roundFactor < 0: roundFactor = 0
if roundFactor < 0:
roundFactor = 0
# Do actual rounding
val = round(val, roundFactor)
# Strip trailing zero for integers and convert to string
result = str(val)[-2:] == '.0' and str(val)[:-2] or str(val)
return result
# Make sure numbers with .0 part designating float don't get through
if int(val) == val:
val = int(val)
return val