Delay cap booster activation until the moment when its charge will be used efficiently
This commit is contained in:
114
eos/capSim.py
114
eos/capSim.py
@@ -95,7 +95,7 @@ class CapSimulator:
|
||||
# use them as needed and want them to be available right away
|
||||
if isInjector:
|
||||
for i in range(amount):
|
||||
heapq.heappush(self.state, [0, duration, capNeed, 0, clipSize, reloadTime])
|
||||
heapq.heappush(self.state, [0, duration, capNeed, 0, clipSize, reloadTime, isInjector])
|
||||
continue
|
||||
if self.stagger and not disableStagger:
|
||||
# Stagger all mods if they do not need to be reloaded
|
||||
@@ -105,7 +105,7 @@ class CapSimulator:
|
||||
else:
|
||||
stagger_amount = (duration * clipSize + reloadTime) / (amount * clipSize)
|
||||
for i in range(1, amount):
|
||||
heapq.heappush(self.state, [i * stagger_amount, duration, capNeed, 0, clipSize, reloadTime])
|
||||
heapq.heappush(self.state, [i * stagger_amount, duration, capNeed, 0, clipSize, reloadTime, isInjector])
|
||||
# If mods are not staggered - just multiply cap use
|
||||
else:
|
||||
capNeed *= amount
|
||||
@@ -116,7 +116,7 @@ class CapSimulator:
|
||||
if clipSize:
|
||||
disable_period = True
|
||||
|
||||
heapq.heappush(self.state, [0, duration, capNeed, 0, clipSize, reloadTime])
|
||||
heapq.heappush(self.state, [0, duration, capNeed, 0, clipSize, reloadTime, isInjector])
|
||||
|
||||
if disable_period:
|
||||
self.period = self.t_max
|
||||
@@ -127,6 +127,7 @@ class CapSimulator:
|
||||
"""Run the simulation"""
|
||||
|
||||
start = time.time()
|
||||
awaitingInjectors = []
|
||||
|
||||
self.reset()
|
||||
|
||||
@@ -153,11 +154,15 @@ class CapSimulator:
|
||||
|
||||
while 1:
|
||||
activation = pop(state)
|
||||
t_now, duration, capNeed, shot, clipSize, reloadTime = activation
|
||||
t_now, duration, capNeed, shot, clipSize, reloadTime, isInjector = activation
|
||||
|
||||
# Max time reached, stop simulation - we're stable
|
||||
if t_now >= t_max:
|
||||
break
|
||||
|
||||
cap = ((1.0 + (sqrt(cap / capCapacity) - 1.0) * exp((t_last - t_now) / tau)) ** 2) * capCapacity
|
||||
# Regenerate cap from last time point
|
||||
if t_now > t_last:
|
||||
cap = ((1.0 + (sqrt(cap / capCapacity) - 1.0) * exp((t_last - t_now) / tau)) ** 2) * capCapacity
|
||||
|
||||
if t_now != t_last:
|
||||
if cap < cap_lowest_pre:
|
||||
@@ -170,30 +175,91 @@ class CapSimulator:
|
||||
cap_wrap = round(cap, stability_precision)
|
||||
t_wrap += period
|
||||
|
||||
cap -= capNeed
|
||||
if cap > capCapacity:
|
||||
cap = capCapacity
|
||||
|
||||
t_last = t_now
|
||||
iterations += 1
|
||||
|
||||
t_last = t_now
|
||||
# If injecting cap will "overshoot" max cap, postpone it
|
||||
if isInjector and cap - capNeed > capCapacity:
|
||||
awaitingInjectors.append((duration, capNeed, shot, clipSize, reloadTime, isInjector))
|
||||
|
||||
else:
|
||||
# If we will need more cap than we have, but we are not at 100% -
|
||||
# use awaiting cap injectors to top us up until we have enough or
|
||||
# until we're full
|
||||
if capNeed > cap and cap < capCapacity:
|
||||
while awaitingInjectors and capNeed > cap and capCapacity > cap:
|
||||
neededInjection = min(capNeed - cap, capCapacity - cap)
|
||||
# Find injectors which have just enough cap or more
|
||||
goodInjectors = [i for i in awaitingInjectors if -i[1] >= neededInjection]
|
||||
if goodInjectors:
|
||||
# Pick injector which overshoots the least
|
||||
bestInjector = min(goodInjectors, key=lambda i: -i[1])
|
||||
else:
|
||||
# Take the one which provides the most cap
|
||||
bestInjector = max(goodInjectors, key=lambda i: -i[1])
|
||||
# Use injector
|
||||
awaitingInjectors.remove(bestInjector)
|
||||
inj_duration, inj_capNeed, inj_shot, inj_clipSize, inj_reloadTime, inj_isInjector = bestInjector
|
||||
cap -= inj_capNeed
|
||||
if cap > capCapacity:
|
||||
cap = capCapacity
|
||||
# Add injector to regular state tracker
|
||||
inj_t_now = t_now
|
||||
inj_t_now += inj_duration
|
||||
inj_shot += 1
|
||||
if inj_clipSize:
|
||||
if inj_shot % inj_clipSize == 0:
|
||||
inj_shot = 0
|
||||
inj_t_now += inj_reloadTime
|
||||
push(state, [inj_t_now, inj_duration, inj_capNeed, inj_shot, inj_clipSize, inj_reloadTime, inj_isInjector])
|
||||
|
||||
if cap < cap_lowest:
|
||||
if cap < 0.0:
|
||||
break
|
||||
cap_lowest = cap
|
||||
# Apply cap modification
|
||||
cap -= capNeed
|
||||
if cap > capCapacity:
|
||||
cap = capCapacity
|
||||
|
||||
# queue the next activation of this module
|
||||
t_now += duration
|
||||
shot += 1
|
||||
if clipSize:
|
||||
if shot % clipSize == 0:
|
||||
shot = 0
|
||||
t_now += reloadTime # include reload time
|
||||
activation[0] = t_now
|
||||
activation[3] = shot
|
||||
if cap < cap_lowest:
|
||||
# Negative cap - we're unstable, simulation is over
|
||||
if cap < 0.0:
|
||||
break
|
||||
cap_lowest = cap
|
||||
|
||||
push(state, activation)
|
||||
# Try using awaiting injectors to top up the cap after spending some
|
||||
while awaitingInjectors and cap < capCapacity:
|
||||
neededInjection = capCapacity - cap
|
||||
# Find injectors which do not overshoot max cap
|
||||
goodInjectors = [i for i in awaitingInjectors if -i[1] <= neededInjection]
|
||||
if not goodInjectors:
|
||||
break
|
||||
# Take the one which provides the most cap
|
||||
bestInjector = max(goodInjectors, key=lambda i: -i[1])
|
||||
# Use injector
|
||||
awaitingInjectors.remove(bestInjector)
|
||||
inj_duration, inj_capNeed, inj_shot, inj_clipSize, inj_reloadTime, inj_isInjector = bestInjector
|
||||
cap -= inj_capNeed
|
||||
if cap > capCapacity:
|
||||
cap = capCapacity
|
||||
# Add injector to regular state tracker
|
||||
inj_t_now = t_now
|
||||
inj_t_now += inj_duration
|
||||
inj_shot += 1
|
||||
if inj_clipSize:
|
||||
if inj_shot % inj_clipSize == 0:
|
||||
inj_shot = 0
|
||||
inj_t_now += inj_reloadTime
|
||||
push(state, [inj_t_now, inj_duration, inj_capNeed, inj_shot, inj_clipSize, inj_reloadTime, inj_isInjector])
|
||||
|
||||
# queue the next activation of this module
|
||||
t_now += duration
|
||||
shot += 1
|
||||
if clipSize:
|
||||
if shot % clipSize == 0:
|
||||
shot = 0
|
||||
t_now += reloadTime # include reload time
|
||||
activation[0] = t_now
|
||||
activation[3] = shot
|
||||
|
||||
push(state, activation)
|
||||
push(state, activation)
|
||||
|
||||
# update instance with relevant results.
|
||||
|
||||
Reference in New Issue
Block a user