Denormalize infinity sig as special case, very much like 0 sig
This commit is contained in:
@@ -18,6 +18,7 @@
|
||||
# =============================================================================
|
||||
|
||||
|
||||
import math
|
||||
from abc import ABCMeta, abstractmethod
|
||||
from collections import OrderedDict, namedtuple
|
||||
|
||||
@@ -151,6 +152,11 @@ class FitGraph(metaclass=ABCMeta):
|
||||
ys = [ys[0], ys[0]]
|
||||
else:
|
||||
raise
|
||||
# Same for NaN which means we tried to denormalize infinity values, which might be the
|
||||
# case for the ideal target profile with infinite signature radius
|
||||
if mainInput.unit == xSpec.unit == '%' and all(math.isnan(x) for x in xs):
|
||||
xs = [min(mainInput.value), max(mainInput.value)]
|
||||
ys = [ys[0], ys[0]]
|
||||
return xs, ys
|
||||
|
||||
_normalizers = {}
|
||||
@@ -225,7 +231,7 @@ class FitGraph(metaclass=ABCMeta):
|
||||
rangeHigh = max(valRange)
|
||||
# Amount is amount of ranges between points here, not amount of points
|
||||
step = (rangeHigh - rangeLow) / segments
|
||||
if step == 0:
|
||||
if step == 0 or math.isnan(step):
|
||||
yield rangeLow
|
||||
else:
|
||||
current = rangeLow
|
||||
|
||||
Reference in New Issue
Block a user